دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: انرژی ویرایش: نویسندگان: Ion Boldea سری: The Electric Generators Handbook ISBN (شابک) : 9780849357152 ناشر: CRC سال نشر: 2005 تعداد صفحات: 516 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 65 مگابایت
کلمات کلیدی مربوط به کتاب ژنراتورهای سرعت متغیر: مجتمع سوخت و انرژی، ماشین های الکتریکی
در صورت تبدیل فایل کتاب Variable Speed Generators به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ژنراتورهای سرعت متغیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بررسی فناوریهای مورد استفاده برای برآورده کردن تقاضای جهانی برای برق باز، کارآمد و پاک، ژنراتورهای سرعت متغیر بررسی عمیقی از ژنراتورهای سرعت متغیر برای هر دو کاربرد مستقل و متصل به شبکه ارائه میکند. بخشی از کتاب راهنمای ژنراتورهای الکتریکی، مجموعه دو جلدی، این اثر، درمان معتبر و کاملاً متمرکزی از توپولوژیها، مدلسازی حالت پایدار و گذرا، عملکرد، کنترل، طراحی و آزمایش ژنراتورهای مستقل و متصل به شبکه را ارائه میدهد که در متغیرها کار میکنند. سرعت ها ژنراتورهای سرعت متغیر به طور کامل انواع ژنراتورهای با سرعت متغیر را که در حال حاضر در تولید پراکنده و کاربردهای انرژی تجدیدپذیر در سراسر جهان در حال پیشرفت هستند، پوشش می دهد. در حالت پایدار، گذرا، کنترل، و طراحی آلترناتورهای سنکرون روتور قطب پنجه، سنکرون القایی، به کمک آهنربا دائمی و دینام استارت رلوکتانس سوئیچ برای خودروهای هیبریدی-الکتریکی بررسی می شود. همچنین ژنراتورهای PM سنکرون، شار عرضی و PM معکوس شار را برای تبدیل انرژی باد و انرژی آبی با سرعت کم و همچنین دینامهای حرکت خطی برای کاربردهای مسکونی و فضاپیما مورد بحث قرار میدهد. نمونه های طراحی و کنترل متعدد بحث را نشان می دهد. وعده انرژی های تجدیدپذیر و پایدار بر توانایی ما در طراحی سیستم های قدرت نوآورانه است که قادر به مهار انرژی از منابع مختلف هستند. ژنراتورهای سرعت متغیر ابزارهای لازم برای طراحی، اعتبارسنجی و استقرار فناوریهای تولید برق مناسب را برای برآوردن نیازهای پیچیده انرژی فردا فراهم میکنند.
Surveying the technologies used to satisfy the world's demand for open, efficient, and clean electricity, Variable Speed Generators provides an in-depth examination of variable-speed generators for both stand-alone and grid-connected applications. Part of The Electric Generators Handbook, Two-Volume Set, this work offers authoritative, tightly focused treatment of the topologies, steady state and transients modeling, performance, control, design, and testing of stand-alone and grid-connected generators operating at variable speeds. Variable Speed Generators thoroughly covers all types of variable-speed generators currently in progress in distributed generation and renewable energy applications around the world. It delves into the steady state, transients, control, and design of claw-pole rotor synchronous, induction, permanent magnet-assisted synchronous, and switched reluctance starter alternators for hybrid-electric vehicles. It also discusses PM synchronous, transverse-flux PM, and flux-reversal PM generators for low-speed wind and hydro energy conversion as well as linear-motion alternators for residential and spacecraft applications. Numerous design and control examples illustrate the discussion. The promise of renewable, sustainable energy rests on our ability to design innovative power systems that are able to harness energy from a variety of sources. Variable Speed Generators supplies the tools necessary to design, validate, and deploy the right power generation technologies to fulfill tomorrow's complex energy needs.
Chapter 1: Wound Rotor Induction Generators (WRIGs): Steady State 1.1 Introduction 1.2 Construction Elements 1.2.1 Magnetic Cores 1.2.2 Windings and Their mmfs 1.2.3 Slip-Rings and Brushes 1.3 Steady-State Equations 1.4 Equivalent Circuit 1.5 Phasor Diagrams 1.6 Operation at the Power Grid 1.6.1 Stator Power vs. Power Angle 1.6.2 Rotor Power vs. Power Angle 1.6.3 Operation at Zero Slip (S = 0) 1.7 Autonomous Operation of WRIG 1.8 Operation of WRIG in the Brushless Exciter Mode 1.9 Losses and Efficiency of WRIG Chapter 2: Wound Rotor Induction Generators: Transients and Control 2.1 Introduction 2.2 The WRIG Phase Coordinate Model 2.3 The Space-Phasor Model of WRIG 2.4 Space-Phasor Equivalent Circuits and Diagrams 2.5 Approaches to WRIG Transients 2.6 Static Power Converters for WRIGs 2.6.1 Direct AC–AC Converters 2.6.2 DC Voltage Link AC–AC Converters 2.7 Vector Control of WRIG at Power Grid 2.7.1 Principles of Vector Control of Machine (Rotor)-Side Converter 2.7.2 Vector Control of Source-Side Converter 2.7.3 Wind Power WRIG Vector Control at the Power Grid 2.7.3.1 The Wind Turbine Model 2.7.3.2 The Supply-Side Converter Model 2.7.3.3 The Generator-Side Converter Model 2.7.3.4 Simulation Results 2.7.3.5 Three-Phase Short-Circuit on the Power Grid 2.7.3.6 Mechanism to Improve the Performance during Fault 2.8 Direct Power Control (DPC) of WRIG at Power Grid 2.8.1 The Concept of DPC 2.9 Independent Vector Control of Positive and Negative Sequence Currents 2.10 Motion-Sensorless Control 2.11 Vector Control in Stand-Alone Operation 2.12 Self-Starting, Synchronization, and Loading at the Power Grid 2.13 Voltage and Current Low-Frequency Harmonics of WRIG Chapter 3: Wound Rotor Induction Generators (WRIGs): Design and Testing 3.1 Introduction 3.2 Design Specifications — An Example 3.3 Stator Design 3.4 Rotor Design 3.5 Magnetization Current 3.6 Reactances and Resistances 3.7 Electrical Losses and Efficiency 3.8 Testing of WRIGs Chapter 4: Self-Excited Induction Generators 4.1 Introduction 4.2 The Cage Rotor Induction Machine Principle 4.3 Self-Excitation: A Qualitative View 4.4 Steady-State Performance of Three-Phase SEIGs 4.4.1 Second-Order Slip Equation Methods 4.4.2 SEIGs with Series Capacitance Compensation 4.5 Performance Sensitivity Analysis 4.5.1 For Constant Speed 4.5.2 For Unregulated Prime Movers 4.6 Pole Changing SEIGs for Variable Speed Operation 4.7 Unbalanced Operation of Three-Phase SEIGs 4.8 One Phase Open at Power Grid 4.9 Three-Phase SEIG with Single-Phase Output 4.10 Two-Phase SEIGs with Single-Phase Output 4.11 Three-Phase SEIG Transients 4.12 Parallel Connection of SEIGs 4.13 Connection Transients in Cage Rotor Induction Generators at Power Grid 4.14 More on Power Grid Disturbance Transients in Cage Rotor Induction Generators Chapter 5: Stator Converter Controlled Induction Generators (SCIGs) 5.1 Introduction 5.2 Grid Connected SCIGs: The Control System 5.2.1 The Machine-Side PWM Converter Control 5.2.1.1 State Observers for DTFC of SCIGs 5.2.1.2 The DTFC–SVM Block 5.2.2 Grid-Side Converter Control 5.3 Grid Connection and Four-Quadrant Operation of SCIGs 5.4 Stand-Alone Operation of SCIG 5.5 Parallel Operation of SCIGs 5.6 Static Capacitor Exciter Stand-Alone IG for Pumping Systems 5.7 Operation of SCIGs with DC Voltage Controlled Output 5.8 Dual Stator Winding for Grid Applications Chapter 6: Automotive Claw-Pole-Rotor Generator Systems 6.1 Introduction 6.2 Construction and Principle 6.3 Magnetic Equivalent Circuit (MEC) Modeling 6.4 Three-Dimensional Finite Element Method (3D FEM) Modeling 6.5 Losses, Efficiency, and Power Factor 6.6 Design Improvement Steps 6.6.1 Claw-Pole Geometry 6.6.2 Booster Diode Effects 6.6.3 Assisting Permanent Magnets 6.6.4 Increasing the Number of Poles 6.6.5 Winding Tapping (Reconfiguration) 6.6.6 Claw-Pole Damper 6.6.7 The Controlled Rectifier 6.7 The Lundell Starter/Generator for Hybrid Vehicles Chapter 7: Induction Starter/Alternators (ISAs) for Electric Hybrid Vehicles (EHVs) 7.1 EHV Configuration 7.2 Essential Specifications 7.2.1 Peak Torque (Motoring) and Power (Generating) 7.2.2 Battery Parameters and Characteristics 7.3 Topology Aspects of Induction Starter/Alternator (ISA) 7.4 ISA Space-Phasor Model and Characteristics 7.5 Vector Control of ISA 7.6 DTFC of ISA 7.7 ISA Design Issues for Variable Speed 7.7.1 Power and Voltage Derating 7.7.2 Increasing Efficiency 7.7.3 Increasing the Breakdown Torque 7.7.4 Additional Measures for Wide Constant Power Range 7.7.4.1 Winding Reconfiguration Chapter 8: Permanent-Magnet-Assisted Reluctance Synchronous Starter/Alternators for Electric Hybrid Vehicles 8.1 Introduction 8.2 Topologies of PM-RSM 8.3 Finite Element Analysis 8.3.1 Flux Distribution 8.3.2 The d–q Inductances 8.3.3 The Cogging Torque 8.3.4 Core Losses Computation by FEM 8.4 The d–q Model of PM-RSM 8.5 Steady-State Operation at No Load and Symmetric Short-Circuit 8.5.1 Generator No-Load 8.5.2 Symmetrical Short-Circuit 8.6 Design Aspects for Wide Speed Range Constant Power Operation 8.7 Power Electronics for PM-RSM for Automotive Applications 8.8 Control of PM-RSM for EHV 8.9 State Observers without Signal Injection for Motion Sensorless Control 8.10 Signal Injection Rotor Position Observers 8.11 Initial and Low Speed Rotor Position Tracking Chapter 9: Switched Reluctance Generators and Their Control 9.1 Introduction 9.2 Practical Topologies and Principles of Operation 9.2.1 The kW/Peak kVA Ratio 9.3 SRG(M) Modeling 9.4 The Flux/Current/Position Curves 9.5 Design Issues 9.5.1 Motor and Generator Specifications 9.5.2 Number of Phases, Stator and Rotor Poles: m, Ns, Nr 9.5.3 Stator Bore Diameter Dis and Stack Length 9.5.4 The Number of Turns per Coil Wc for Motoring 9.5.5 Current Waveforms for Generator Mode 9.6 PWM Converters for SRGs 9.7 Control of SRG(M)s 9.7.1 Feed-Forward Torque Control of SRG(M) with Position Feedback 9.8 Direct Torque Control of SRG(M) 9.9 Rotor Position and Speed Observers for Motion-Sensorless Control 9.9.1 Signal Injection for Standstill Position Estimation 9.10 Output Voltage Control in SRG Chapter 10: Permanent Magnet Synchronous Generator Systems 10.1 Introduction 10.2 Practical Configurations and Their Characterization 10.2.1 Distributed vs. Concentrated Windings 10.3 Airgap Field Distribution, emf and Torque 10.4 Stator Core Loss Modeling 10.4.1 FEM-Derived Core Loss Formulas 10.4.2 Simplified Analytical Core Loss Formulas 10.5 The Circuit Model 10.5.1 The Phase Coordinate Model 10.5.2 The d–q Model of PMSG 10.6 Circuit Model of PMSG with Shunt Capacitors and AC Load 10.7 Circuit Model of PMSG with Diode Rectifier Load 10.8 Utilization of Third Harmonic for PMSG with Diode Rectifiers 10.9 Autonomous PMSGs with Controlled Constant Speed and AC Load 10.10 Grid-Connected Variable-Speed PMSG System 10.10.1 The Diode Rectifier and Boost DC–DC Converter Case 10.11 The PM Genset with Multiple Outputs 10.12 Super-High-Speed PM Generators: Design Issues 10.12.1 Rotor Sizing 10.12.2 Stator Sizing 10.12.3 The Losses 10.13 Super-High-Speed PM Generators: Power Electronics Control Issues 10.14 Design of a 42 Vdc Battery-Controlled-Output PMSG System 10.14.1 Design Initial Data 10.14.2 The Minimum Speed: nmin 10.14.3 The Number of Poles: 2p1 10.14.4 The Rotor Configuration 10.14.5 The Stator Winding Type 10.14.6 Winding Tapping 10.14.7 The PMSG Current Waveform 10.14.8 The Diode Rectifier Imposes almost Unity Power Factor 10.14.9 Peak Torque-Based Sizing 10.14.10 Generator to DC Voltage Relationships 10.14.11 The PM, Ls, Rs Expressions 10.15 Methods for Testing PMSGs 10.15.1 Standstill Tests 10.15.2 No-Load Generator Tests 10.15.3 Short-Circuit Generator Tests 10.15.4 Stator Leakage Inductance and Skin Effect 10.15.5 The Motor No-Load Test 10.15.6 The Generator Load Tests 10.16 Note on Medium-Power Vehicular Electric Generator Systems Chapter 11: Transverse Flux and Flux Reversal Permanent Magnet Generator Systems 11.1 Introduction 11.2 The Three-Phase Transverse Flux Machine (TFM): Magnetic Circuit Design 11.2.1 The Phase Inductance Ls 11.2.2 Phase Resistance and Slot Area 11.3 TFM — the d–q Model and Steady State 11.4 The Three-Phase Flux Reversal Permanent Magnet Generator: Magnetic and Electric Circuit Design 11.4.1 Preliminary Geometry for 200 Nm at 128 rpm via Conceptual Design 11.4.2 FEM Analysis of Pole-PM FRM at No Load 11.4.3 FEM Analysis at Steady State on Load 11.4.4 FEM Computation of Inductances 11.4.5 Inductances and the Circuit Model of FRM 11.4.6 The d–q Model of FRM 11.4.7 Notes on Flux Reversal Generator (FRG) Control Chapter 12: Linear Motion Alternators (LMAs) 12.1 Introduction 12.2 LMA Principle of Operation 12.2.1 The Motion Equation 12.3 PM-LMA with Coil Mover 12.4 Multipole LMA with Coil Plus Iron Mover 12.5 PM-Mover LMAs 12.6 The Tubular Homopolar PM Mover Single-Coil LMA 12.7 The Flux Reversal LMA with Mover PM Flux Concentration 12.8 PM-LMAs with Iron Mover 12.9 The Flux Reversal PM-LMA Tubular Configuration 12.9.1 The Analytical Model 12.10 Control of PM-LMAs 12.10.1 Electrical Control 12.10.2 The Spark-Ignited Gasoline Linear Engine Model 12.10.3 Note on Stirling Engine LMA Stability 12.11 Progressive-Motion LMAs for Maglevs with Active Guideway 12.11.1 Note on Magnetohydrodynamic (MHD) Linear Generators