دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Alessandro D’Ulivo. Ralph Sturgeon
سری:
ISBN (شابک) : 0323858341, 9780323858342
ناشر: Elsevier
سال نشر: 2022
تعداد صفحات: 461
[462]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب Vapor Generation Techniques for Trace Element Analysis: Fundamental Aspects به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک های تولید بخار برای تجزیه و تحلیل عناصر ردیابی: جنبه های اساسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنیکهای تولید بخار برای تجزیه و تحلیل عناصر ردیابی: جنبههای بنیادی یک مرور کلی و بحث در مورد جنبههای اساسی حاکم بر واکنشهای مشتقسازی عناصر سطح ردیابی برای اهداف تحلیلی ارائه میدهد. تکنیکهای تولید بخار همراه با طیفسنجی اتمی یا جرمی بیش از 50 سال است که مورد استفاده قرار گرفتهاند، اما محبوبیت آنها در سالهای اخیر بهطور چشمگیری افزایش یافته است، بهویژه با توسعه رویکردهای تولید بخار جایگزین. این کتاب شکاف دانش مکانیزمهای مشتقسازی که ترکیبات فرار تولید میکنند را پر میکند و بهروزرسانیهایی را در مورد پیشرفتهای اخیر در تکنیکهای تولید بخار مورد استفاده برای تعیین و زایی عناصر کمیاب توسط طیفسنجی نوری اتمی و طیفسنجی جرمی ارائه میدهد.
< p>این به عنوان یک مرور جامع و تک منبعی از پیشرفتهای اخیر عمل میکند و به خوانندگان درک درستی از پیادهسازی و محدودیتهای بکارگیری تکنیکهای تولید بخار برای مشکلات تحلیلی روزمره پیش روی تحلیلگر عناصر کمیاب ارائه میکند. span>Vapor Generation Techniques for Trace Element Analysis: Fundamental Aspects provides an overview and discussion of the fundamental aspects governing derivatization reactions of trace-level elements for analytical purposes. Vapor generation techniques coupled with atomic or mass spectrometry have been employed for over 50 years, but their popularity has dramatically increased in recent years, especially as alternative vapor generation approaches have been developed. This book bridges the knowledge gap of the derivatization mechanisms that yield volatile compounds and provides an update on recent developments in vapor generation techniques used for the determination and speciation of trace elements by atomic optical and mass spectrometry.
It will serve as a comprehensive, single-source overview of recent developments, providing readers with an understanding of the correct implementation―and limitations―of applying vapor generation techniques to everyday analytical problems facing the trace element analyst.
Vapor Generation Techniques for Trace Element Analysis Copyright List of contributors Contents Preface Reference Abbreviations and symbols 1 Introduction to vapor generation techniques 1.1 Introduction 1.2 Limitations of current sample introduction and atomization techniques 1.3 Vapor generation techniques 1.4 Favorable features and shortcomings of VGTs 1.5 Overview of book structure and content References 2 Chemical vapor generation by aqueous boranes 2.1 Introduction and historical background 2.1.1 Chemical vapor generation by aqueous boranes 2.1.2 Brief historical notes on boranes employed in chemical vapor generation 2.2 Borane reagents, reaction products, and apparatus 2.2.1 Stability of boranes in aqueous solution 2.2.2 Reaction products 2.2.2.1 Germanium, tin, and lead 2.2.2.2 Arsenic, antimony, and bismuth 2.2.2.3 Selenium and tellurium 2.2.2.4 Mercury and other elements 2.2.3 Chemical vapor generation by boranes other than [BH4]− 2.2.4 Chemical reactors 2.2.4.1 Batch reactors 2.2.4.2 Continuous-flow reactors 2.3 Processes and mechanisms of chemical vapor generation 2.3.1 Mechanism of hydrolysis of [BH4]− 2.3.1.1 Hydrolysis of [BH4]− is a stepwise reaction 2.3.1.2 General acid catalysis 2.3.1.3 Hydrolysis of [BH4]− under strongly acidic conditions 2.3.1.4 Hydrolysis of [BH4]− under strongly alkaline conditions 2.3.1.5 Hydrolysis of [BH4]− under intermediate pH conditions (≈3.8%3cpH%3c≈12) 2.3.2 Mechanism of acid-catalyzed hydrolysis of amine-boranes 2.3.3 Studies on the mechanism of generation of volatile hydrides 2.3.3.1 Deuterium-labeled experiments 2.3.3.2 Results of deuterium-labeled experiments 2.3.3.3 Mechanism of hydrogen transfer 2.3.4 Experimental evidence of intermediates using nonanalytical conditions 2.3.4.1 Hydrido–metal(loid) complex intermediates 2.3.4.2 Analyte–borane complex intermediates 2.3.4.2.1 Analyte–borane complexes in the generation of arsanes from arsenosugars 2.4 Factors controlling reactivity in chemical vapor generation 2.4.1 Accessibility of analyte atom to hydride 2.4.2 Role of additives 2.4.2.1 Studies on the role of additives 2.4.3 The role of pH 2.4.3.1 Activation of the analyte substrate 2.4.3.2 The role played by hydrolysis products of borane reagents 2.4.3.3 Ionization of the final products 2.5 Interferences 2.5.1 Categorization of interferences 2.5.1.1 Selectivity of borane complexes toward analyte and interfering species 2.5.2 Mutual interferences and self-interferences 2.5.3 A more general reaction model for chemical vapor generation 2.5.4 Mechanistic interference in arsane generation 2.5.4.1 Interaction of [BH4]− with metal ions and metal nanoparticles 2.6 Final remarks, open questions, and future trends References 3 Chemical vapor generation of transition and noble metals 3.1 Introduction and background 3.2 Experimental implementations of chemical vapor generation 3.2.1 Experimental setup and detectors 3.2.2 Reaction conditions 3.2.3 Effect of additives as reaction modifiers 3.3 Efficiency of chemical vapor generation 3.4 Detailed discussion of mechanisms and fundamental processes in chemical vapor generation 3.4.1 Reaction model discussion 3.4.2 Transport properties of volatile species 3.4.3 Identity of volatile species 3.5 Shortcomings with theory, remaining problems, and limitations 3.6 Conclusions and future developments Acknowledgements References 4 Chemical vapor generation by aqueous phase alkylation 4.1 Introduction 4.2 CVG with tetraalkylborates 4.2.1 Historical background 4.2.2 Reaction products and applications 4.2.3 Properties and reactivity of tetraalkylborates 4.2.3.1 Interferences 4.2.3.2 Side reactions and transalkylation 4.3 CVG with trialkyloxonium salts 4.3.1 Historical background 4.3.2 Reaction products and applications 4.3.3 Properties and reactivity of trialkyloxonium 4.3.3.1 R3O+ acid hydrolysis and pH adjustment 4.3.3.2 Manipulating R3O+ salts 4.3.3.3 Reaction medium: aqueous or nonaqueous? 4.3.3.4 Interferences and other effects 4.4 Metal speciation with Grignard reagents 4.4.1 Historical background 4.4.2 Properties and reactivity of Grignard reagents 4.4.2.1 Interferences and transalkylation 4.5 Future trends and perspectives References 5 Other chemical vapor generation techniques 5.1 Introduction 5.2 Chelate formation 5.2.1 Classical chelates 5.2.2 Online room temperature chelate vapor generation 5.2.2.1 Apparatus and optimization 5.2.2.2 Identity of volatile species and generation efficiency 5.3 Thermal chemical vapor generation 5.4 Generation of volatile oxides 5.4.1 Effect of oxide formation 5.4.2 Electrothermal vaporization of oxides 5.4.3 Volatilization of oxides from solution 5.5 Chemical vapor generation of volatile chlorides 5.5.1 Arsenic 5.5.2 Germanium 5.5.3 Tin 5.6 Chemical vapor generation of volatile fluorides 5.7 Chemical vapor generation of volatile bromides 5.8 Chemical vapor generation of volatile carbonyls 5.9 Chemical vapor generation of boron esters 5.10 Chemical vapor generation using SnCl2 5.11 Concluding remarks References 6 Chemical vapor generation in nonaqueous media 6.1 Introduction and background 6.2 Early studies on chemical vapor generation in nonaqueous media 6.3 Experimental implementation of the technique 6.3.1 Instrumentation and apparatus 6.3.2 Typical procedure for NACVG 6.3.2.1 Liquid-phase microextraction procedure before NACVG 6.3.2.2 Summary of analytical performance 6.4 Fundamental processes; theory and mechanisms 6.4.1 Effect of types of reductant and reaction products 6.4.2 Parameters controlling nonaqueous phase derivatization 6.4.2.1 Chelating/complexing agents and acidity 6.4.2.2 Organic medium 6.4.3 Effect of surfactant as sensitizer 6.4.4 Interferences 6.5 Remaining problems, limitations, and shortcomings 6.6 Future developments 6.7 Conclusions References 7 Photo-sono-thermo-chemical vapor generation techniques 7.1 General introduction 7.2 Photochemical vapor generation 7.2.1 Development and practical implementation of photochemical vapor generation 7.2.1.1 Photoreactor design considerations 7.2.1.2 Impact of irradiation wavelength 7.2.1.3 Sample processing 7.2.1.4 Analyte phase transfer 7.2.1.5 Practical implementation 7.2.1.6 Species identification and yield 7.2.2 Analytical performance, features, and shortcomings 7.2.3 Fundamental and mechanistic aspects 7.2.3.1 Alkyl halide generation 7.2.3.2 Se, Te, As, and Sb oxyanions 7.2.3.2.1 Se 7.2.3.2.2 Te 7.2.3.2.3 As 7.2.3.2.4 Sb 7.2.3.3 Photochemical vapor generation of transition metal carbonyls 7.2.3.3.1 Photochemical vapor generation of Fe, Ni, and Co 7.2.3.3.2 Photochemical vapor generation of Mo and W 7.2.3.4 Photochemical vapor generation of Pb, Sn, Cd, Cu, Tl, and Bi 7.2.3.5 Photochemical vapor generation of Hg 7.2.3.6 Photochemical vapor generation of Os 7.2.4 Role of catalysts: heterogeneous and homogeneous systems 7.2.5 Interferences 7.2.6 Future directions 7.3 Sonochemical vapor generation 7.3.1 Analytical performance, features, and shortcomings 7.3.2 Future directions 7.4 Thermochemical vapor generation 7.5 Concluding remarks References 8 Catalysts in photochemical vapor generation 8.1 Introduction 8.2 Heterogeneous catalysis 8.2.1 TiO2 8.2.2 TiO2-based composites 8.2.3 Metal–organic frameworks 8.3 Homogeneous catalysis 8.3.1 Metal ion–assisted photochemical vapor generation 8.4 Conclusions Acknowledgments References 9 Plasma-mediated vapor generation techniques 9.1 General introduction 9.2 Sources for plasma-mediated vapor generation 9.2.1 Liquid electrode glow discharges 9.2.1.1 Solution cathode glow discharge 9.2.1.2 Alternating current–driven solution electrode glow discharge 9.2.1.3 Solution anode glow discharge 9.2.2 Dielectric barrier discharges 9.2.2.1 Coaxial dielectric barrier discharge 9.2.2.2 Thin-film dielectric barrier discharge 9.2.2.3 Liquid spray dielectric barrier discharge 9.3 Influence of coexisting ions on PMVG 9.4 Analytical performance and applications of PMVG 9.5 Possible mechanisms of PMVG 9.6 Concluding remarks and future trends References 10 Electrochemical vapor generation 10.1 Introduction and background to electrochemical vapor generation 10.2 Fundamentals and experimental implementation of ECVG 10.2.1 Experimental aspects: cell designs and cathode material 10.2.1.1 Effects of cell geometry 10.2.1.2 Cathode material 10.2.2 Experimental variables affecting ECVG 10.2.2.1 Anolyte and catholyte solutions 10.2.2.2 Electrolytic current 10.2.2.3 Flow rate of the electrolyte 10.2.2.4 Carrier gas flow rate 10.3 Mechanisms of ECVG 10.4 Shortcomings and limitations: interferences in ECVG 10.4.1 Transition and noble metal ions 10.4.2 Strong oxidants 10.4.3 Hydride-forming elements 10.4.4 Interferences with cold vapor mercury generation and other volatile species 10.4.5 Limitations on applications of ECVG to real samples 10.5 Final remarks and future developments References 11 Nonplasma devices for atomization and detection of volatile metal species by atomic absorption and fluorescence 11.1 Introduction 11.2 Processes taking place in online atomizers 11.3 Online atomization—preliminary considerations 11.4 Online atomizers 11.4.1 Conventional quartz tube atomizers 11.4.1.1 Conventional quartz tube atomizer without introduction of extra oxygen 11.4.1.2 Conventional quartz tube atomizer with introduction of extra oxygen 11.4.1.3 Influence of atomization parameters on sensitivity with the conventional quartz tube atomizer 11.4.1.4 Interferences in conventional quartz tube atomizer 11.4.1.5 Conventional quartz tube atomizer—assessment 11.4.2 Multiatomizer 11.4.3 Other designs of online atomizers for AAS 11.4.4 Miniature diffusion flame atomizer 11.4.5 Flame-in-gas-shield atomizer 11.4.6 Other miniature flame atomizers 11.5 In-atomizer collection—preliminary considerations 11.6 Experimental approaches to in-atomizer collection 11.6.1 In situ collection in graphite furnaces 11.6.2 Trapping on a quartz surface—atomization in a quartz tube atomizer 11.6.3 Trapping on a W coil 11.6.4 In situ collection in (quartz) integrated atom trap immersed in an air-acetylene flame 11.7 Conclusions and future perspectives Acknowledgments Dedication References 12 Dielectric barrier discharge devices 12.1 Introduction 12.2 DBD concept and designs 12.3 Plasma chemistry: processes and species 12.4 Analytical applications 12.4.1 Selecting the best analytical parameters to evaluate performance 12.4.2 Experimental parameters affecting DBD atomizer performance 12.5 DBD atomizers for AAS 12.5.1 Analytes studied 12.5.2 Analytical figures of merit 12.5.3 Mechanistic studies 12.5.4 Fate of free atoms and atomization efficiency 12.6 DBD atomizers for AFS 12.7 DBD excitation for OES 12.7.1 Analytes studied 12.7.2 Parameters affecting DBD performance 12.7.3 Detection and data evaluation 12.8 Analyte preconcentration 12.8.1 Principle 12.8.2 Atomic absorption spectrometry 12.8.3 Atomic fluorescence spectrometry 12.8.4 Optical emission spectrometry 12.8.5 Preconcentration efficiency 12.8.6 Preconcentration mechanisms 12.9 Speciation analysis 12.10 Future perspectives Acknowledgment References Index