دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Zainul Akmar Zakaria (editor), Ramaraj Boopathy (editor), Julian Rafael Dib (editor) سری: ISBN (شابک) : 3030391361, 9783030391362 ناشر: Springer سال نشر: 2020 تعداد صفحات: 313 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Valorisation of Agro-industrial Residues – Volume I: Biological Approaches (Applied Environmental Science and Engineering for a Sustainable Future) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارزشیابی پسماندهای کشاورزی و صنعتی - جلد اول: رویکردهای بیولوژیکی (علوم و مهندسی محیط زیست کاربردی برای آینده ای پایدار) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کشاورزی و صنعت دو بخش مهم اقتصادی برای کشورهای مختلف در سراسر جهان هستند که میلیونها شغل را فراهم میکنند و همچنین منبع اصلی درآمد برای این کشورها هستند. با این وجود، با افزایش تقاضا برای محصولات کشاورزی و صنعتی، مقادیر زیادی زباله نیز تولید می شود. بدون مدیریت صحیح، این زباله ها (هم مایع و هم جامد) یک تهدید جدی برای کیفیت کلی محیط زیست به شمار می رود، که عمدتاً به دلیل سمیت و فرآیندهای تخریب کند آن است. رویکردهای کنونی مؤثر هستند، اما معمولاً به سرمایهگذاری عظیم نیاز دارند، کار فشرده هستند و محصولات جانبی خطرناک بالقوه تولید میکنند. به این ترتیب، نیاز به روشهای جایگزینی وجود دارد که ارزانتر، آسانتر و با حداقل تأثیر بالقوه بر کیفیت محیطزیست باشند.
این کتاب رویکردهای به روزی را با استفاده از تکنیک های بیولوژیکی برای مدیریت فراوانی زباله های تولید شده از فعالیت های کشاورزی و صنعتی ارائه می دهد. این کتاب تکنیک هایی مانند تبدیل زیستی، تجزیه زیستی، تبدیل زیستی، و نظارت زیستی و همچنین استفاده از این زباله ها را مورد بحث قرار می دهد. تعدادی از فصل ها همچنین شامل مطالعات موردی فردی برای افزایش درک خوانندگان از موضوعات است.
این کتاب جامع یک منبع مفید برای هر کسی است که در زمینه مدیریت پسماندهای کشاورزی و صنعتی، شیمی سبز یا بیوتکنولوژی فعالیت دارد. همچنین به عنوان یک اثر مرجع برای دانشجویان تحصیلات تکمیلی و کلیه کتابخانه های کشاورزی و بیوتکنولوژی توصیه می شود.
Agriculture and industry are the two most important economic sectors for various countries around the globe, providing millions of jobs as well as being the main source of income for these countries. Nevertheless, with the increasing demand for agricultural and industrial produce, huge amounts of waste are also being produced. Without proper management, this waste (both liquid and solid) poses a serious threat to overall environmental quality, mainly due to its toxicity and slow degradation processes. Current approaches are effective but would normally require huge capital investments, are labour intensive and generate potential hazardous by-products. As such, there is a need for alternative approaches that are cheaper, easier-to-handle and have a minimum potential impact on environmental quality.
This book presents up-to-date approaches using biological techniques to manage the abundance of waste generated from agricultural and industrial activities. It discusses techniques such as bioconversion, biodegradation, biotransformation, and biomonitoring as well as the utilization of these wastes. A number of chapters also include individual case studies to enhance readers’ understanding of the topics.
This comprehensive book is a useful resource for anyone involved in agricultural and industrial waste management, green chemistry or biotechnology. It is also recommended as a reference work for graduate students and all agriculture and biotechnology libraries.
Contents Contributors Chapter 1: Dark Fermentation and Bioelectrochemical Systems for Enhanced Biohydrogen Production from Palm Oil Mill Effluent: C... 1.1 Introduction 1.2 POME as a Substrate for Biohydrogen Production 1.3 Challenges Associated with Dark Fermentation Process 1.4 Approaches to Improving Biohydrogen Yield Under Dark Fermentation Process 1.5 Operational Conditions 1.5.1 Reactor Design 1.5.2 Fermentation Temperature 1.5.3 Enrichments of Biohydrogen-Producing Microbial Communities 1.5.4 POME Pre-treatment Methods 1.6 Integration of Dark Fermentation with Other Processes 1.6.1 Dark Fermentation and Anaerobic Digestion 1.6.2 Dark Fermentation and Photo-Fermentation 1.6.3 Dark Fermentation and Bioelectrochemical Systems 1.7 Challenges in Using Hydrogen as an Energy Carrier 1.8 Conclusion References Chapter 2: Spent Mushroom Substrate as Biofertilizer for Agriculture Application 2.1 Introduction 2.1.1 Microbial Community in Spent Mushroom Substrate 2.1.1.1 Isolation and Identification of Bacteria from SMS 2.1.1.2 Isolation and Identification of Fungi from SMS 2.2 Application of SMS in Agriculture 2.2.1 SMS as Composting Material 2.2.2 The Use of SMS as Soil Amendment 2.2.3 Application of SMS for Soil Remediation 2.2.4 Evaluation of SMS as Biocontrol Agents in Agricultural Application 2.2.5 SMS in Enhancing Accumulation of Health Beneficial Secondary Metabolites in Plants 2.3 Conclusion References Chapter 3: Biological Treatment of Agro-Industrial Waste 3.1 Introduction 3.2 Biological Treatment 3.2.1 Fungal Treatment 3.2.2 Yeast Treatment 3.2.3 Bacterial Treatment 3.2.4 Fermentation Technology 3.2.4.1 Submerged Fermentation 3.2.4.2 Solid-State Fermentation 3.3 Advantages and Disadvantages of Biological Treatments 3.4 Products from the Biological Treatments of Agro-Industrial Wastes 3.5 Creating a Sustainable Practice for Industries Producing Agricultural Waste 3.5.1 Improve Plant Profitability 3.5.2 Suggestions and Recommendations 3.6 Conclusion References Chapter 4: Proteomics of Lignocellulosic Substrates Bioconversion in Anaerobic Digesters to Increase Carbon Recovery as Methane 4.1 Introduction 4.2 Anaerobic Digestion of Lignocellulosic Substrates 4.3 Recognizing Important Pathways of AD 4.4 Metaproteomics in AD of Lignocellulosic Substrates 4.4.1 Hydrolysis 4.4.2 Nutrient Transport 4.4.3 Acidogenesis 4.4.4 Acetogenesis 4.4.5 Interspecies Hydrogen Transfer in Syntrophs 4.4.6 Methanogenesis 4.5 Stress Responses and Biomarkers 4.6 Challenges and Future Perspectives References Chapter 5: Circular Economy and Agro-Industrial Wastewater: Potential of Microalgae in Bioremediation Processes 5.1 Introduction 5.2 Use of C. vulgaris for the Treatment of Dairy and Swine Effluents 5.3 Use of C. vulgaris for the Treatment of Agrochemicals Effluents 5.3.1 Proposal of a Clean Remediation Technology for Water Contaminated with Glyphosate: The Advanced Oxidation Process (AOPs)... 5.3.2 Added Value to Microalgae Biomass References Chapter 6: Utilization of Agro-Waste as Carbon Source for Biohydrogen Production: Prospect and Challenges in Malaysia 6.1 Introduction 6.2 Biohydrogen Production Via Dark Fermentation Process 6.3 Agro-Waste in Malaysia: Quantity Versus Quality 6.3.1 Locally Produced Agro-Waste in Malaysia 6.3.2 Utilization of Agro-Waste as Carbon Source: How and Challenges 6.4 Prospect of Biohydrogen Production in Malaysia 6.4.1 Strategy to Purify Biohydrogen Gas Via Chemical Absorption Process 6.5 Biohydrogen in Malaysia: Prospect and Impact 6.6 Conclusion References Chapter 7: Agro-Industrial Waste as Substrates for the Production of Bacterial Pigment 7.1 Introduction 7.1.1 Agro-Industrial Waste: A Scenario 7.2 Microbial Fermentation 7.3 Pigment Production 7.4 Application of Bacterial Pigments 7.4.1 Pharmaceutical Industry 7.4.2 Food Industry 7.4.3 Textile Industry 7.5 Conclusions References Chapter 8: Analysis of Termite Microbiome and Biodegradation of Various Phenolic Compounds by a Bacterium Isolated from the Te... 8.1 Introduction 8.2 Bacterial Diversity 8.3 Stability of Termite Microbiome 8.4 Eusociality in Termites 8.5 Metabolic Function of Termite Gut Bacteria 8.6 Termite Gut Microbiome Analysis 8.7 Degradation of Phenolic Compounds 8.8 Statistics 8.9 Bacterial Diversity in Termites of Various Geographical Locale and Wood Types 8.10 Phenol Degradation by a Termite Gut Bacterium 8.11 Degradation of Nitroaromatics and Toluene 8.12 Conclusions References Chapter 9: Compatible Technologies to Anaerobic Digestion for the Integral Valorization of Organic Waste 9.1 Introduction 9.2 Current State of Anaerobic Digestion 9.2.1 Worldwide State 9.2.2 Latin America Landscape 9.3 Bioprospecting in Tropical Countries 9.3.1 Processes That Can Be Coupled to Anaerobic Digestion 9.3.1.1 Biogas 9.3.1.2 Liquid Effluent 9.3.1.3 Solid Digestate 9.4 Biofactory Model-Based on Anaerobic Digestion 9.5 Challenges and Perspectives 9.6 Opportunities for Tropical and Developing Countries: Colombian Case 9.7 Challenges References Chapter 10: Recycling and Reuse of Ayurvedic Pharma Industry Wastes 10.1 Introduction 10.2 Ayurvedic Pharma Industry Wastes 10.3 Solid Wastes 10.3.1 Vermicomposting 10.3.2 Windrow Composting 10.3.3 Spent Black Pepper: A Thrown Away Residue 10.4 Liquid Waste 10.4.1 Integrated Microbial-Vermifiltration Technique 10.4.2 Electrocoagulation 10.4.3 Treatment of Wastewater Using Algae 10.5 Medicinal Oil Waste 10.6 Conclusion References Chapter 11: Production of Unicellular Biomass as a Food Ingredient from Agro-Industrial Waste 11.1 Introduction 11.2 Fermentation 11.2.1 Liquid or Submerged Fermentation 11.2.2 Solid-State Fermentation 11.3 Carbon Sources 11.4 Agro-Industrial Waste Used as Carbon Source 11.5 Composition of Agro-Industrial Waste 11.5.1 Cellulose 11.5.2 Hemicellulose 11.5.3 Lignin 11.6 Sources of Nitrogen 11.7 Types of Biomass 11.7.1 Biomass from Microalgae 11.7.2 Biomass of Algae as a Food Supplement 11.7.3 Biomass of Algae as Fuel 11.7.4 Microalgae Biomass Production 11.8 Fungal Biomass Production 11.9 Yeast Biomass 11.9.1 Yeast Biomass as Food 11.9.2 Biofuels Obtained by Yeast Fermentation 11.10 Biomass of Bacteria 11.10.1 Biomass of Bacteria as Food 11.11 Conclusion References Chapter 12: Cyanobacterial Degradation of Organophosphorus Pesticides 12.1 Introduction 12.2 Pesticides 12.3 Organophosphorus Pesticides 12.3.1 Toxicology of Organophosphorus Pesticides 12.3.2 Conventional Techniques to Remediate Organophosphorus Pollution 12.3.3 Biodegradation Organophosphorus Pesticides 12.4 Cyanobacteria 12.4.1 Cyanobacteria as a Tool for Bioremediation 12.4.2 Organophosphorus Pesticide Degradation by Cyanobacteria 12.4.2.1 Chlorpyrifos 12.4.2.2 Malathion 12.4.2.3 Fenamiphos 12.4.2.4 Methyl Parathion 12.4.3 Recombinant Cyanobacteria for Biodegradation 12.5 Conclusion References Chapter 13: Microbial Identification and Extracellular Polymeric Substances Characterization of Aerobic Granules Developed in ... 13.1 Introduction 13.2 Materials and Methods 13.2.1 Wastewater Collection 13.2.2 Seed Sludge Sampling 13.2.3 Experimental Setup 13.2.4 Characteristics of Extracellular Polymeric Substances 13.3 Results and Discussion 13.3.1 Microbial Diversity in Seed Sludge and Aerobic Granular Sludge 13.3.2 Comparison of Bacterial Community in Seed Sludge and Aerobic Granules 13.3.2.1 Abundant Bacterial Species of Seed Sludge and Aerobic Granular Sludge 13.3.2.2 Role of Bacteria in Sludge Granulation 13.3.2.3 Role of Bacteria in Organic and Nutrients Biodegradation 13.3.3 EPS Contents of Aerobic Granular Sludge 13.3.4 EEM Fluorescence Spectra of the EPS of Aerobic Granular Sludge 13.4 Conclusion References Chapter 14: Granulation and Biodegradation by Microbial Species in Granular Sequencing Batch Reactor for Soy Sauce Wastewater ... 14.1 Introduction 14.1.1 Wastewater and Sludge Collection 14.1.2 Laboratory-Scale Reactor Design 14.1.3 Microbial Identification 14.1.4 Microbial Community Shift During Granulation 14.1.5 Shifting of Bacterial Community in Seed Sludge to Aerobic Granular Sludge 14.1.6 Abundance of Bacterial Population in GSBR 14.1.7 Role of Bacteria in Sludge Granulation 14.1.8 Role of Bacteria in Organic and Nutrients Biodegradation 14.2 Conclusions References