دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بیوتکنولوژی ویرایش: نویسندگان: Dan Bahadur Pal. Pardeep Singh سری: Novel Biotechnological Applications for Waste to Value Conversion ISBN (شابک) : 1032051620, 9781032051628 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 357 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 29 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Utilization of Waste Biomass in Energy, Environment and Catalysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استفاده از زیست توده زباله در انرژی، محیط زیست و کاتالیز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
زیست توده به عنوان ماده اولیه برای تولید سوخت های زیستی و سایر محصولات با ارزش افزوده کاربرد پیدا می کند، که کاربرد آن در حوزه های انرژی و محیطی با تمرکز ویژه بر تولید انرژی زیستی از بیومس های مختلف و محصولات صنعتی با حجم بالا با ارزش متوسط است. . این کتاب به بررسی مشکلات سنتز کنترل شده این مواد و تأثیر خصوصیات مورفولوژیکی، فیزیکی و شیمیایی آنها بر ظرفیت جذب یا دفع آنها و پیشرفت اخیر در کاتالیزورهای سبز مشتق شده از زیست توده برای کاربردهای مختلف کاتالیزوری می پردازد. اثرات اجتماعی-اقتصادی بر محیط و اقلیم در رابطه با زیست توده زباله نیز مورد بحث قرار گرفته است.
ویژگی ها:
این کتاب برای حرفه ای ها، دانشجویان ارشد در رشته های علوم محیطی، مطالعات انرژی، محیط زیست و مهندسی شیمی هدف قرار می گیرد.
Biomass finds its application as feedstock to produce biofuels and other value-added products, which finds usage in energy and environmental areas with particular focus on bio-energy production from different biomass and high-volume medium-value industrial products. This book investigates problems of controlled synthesis of these materials and the effect of their morphological, physical, and chemical characteristics on their adsorption or desorption capacity and recent progress in green catalysts derived from biomass for various catalytic applications. Socio-economic impacts on environment and climate regarding waste biomass are discussed as well.
Features:
This book aims at Professionals, Senior undergraduate students in Environmental Sciences, Energy Studies, Environmental and Chemical Engineering.
Cover Half Title Series Information Title Page Copyright Page Table of Contents Preface Editors Contributors 1 Agricultural Waste Biomass Utilization as a Bio-Adsorbent: Activated Carbon for Dye Removal 1.1 Introduction 1.2 Dye 1.3 Agricultural Waste Biomass Sources 1.3.1 Peanut Shell 1.3.2 Bagasse 1.3.3 Peat 1.3.4 Rice Husk 1.3.5 Coconut Shell 1.3.6 Activated Carbon 1.3.7 Preparation of AC 1.4 Adsorption Model 1.5 Process Parameters, Decolorization and COD Reduction 1.6 Adsorption Surface Characterization Technique 1.6.1 X-Ray Spectroscopy (SEM/TEM) 1.7 Conclusions References 2 Agricultural Waste Biomass Utilization in Waste Water Treatment 2.1 Introduction 2.2 Water Quality 2.3 Natural Processes Affecting Water Quality 2.3.1 Distance From Oceans 2.3.2 Climate and Vegetation 2.3.3 Rock Composition (Lithology) 2.3.4 Terrestrial Vegetation 2.3.5 Aquatic Vegetation 2.4 Water Pollution 2.5. Major Sources of Water Pollution 2.5.1 Urbanization 2.5.2 Sewerage and Other OD Wastes 2.5.3 Industrial Effluent and Wastes 2.5.4 Agro-Chemical Wastes 2.5.5 Nutrient Enrichment 2.5.6 Thermal Pollution 2.5.7 Oil Spillage 2.5.8 Disruption of Sediments 2.5.9 Acid Rain Pollution 2.5.10 Radioactive Waste 2.5.11 Climate Change 2.6 Categories of Water Pollutants 2.6.1 Organic and Biotic Pollutants 2.6.2 Inorganic Or Abiotic Pollutants 2.6.3 Radiogenic Pollutants 2.6.4 Suspended Material (Dissolved Solids) 2.6.5 Pathogenic Organisms 2.6.6 Nutrients and Agricultural Pollutants 2.6.7 Thermal Pollution 2.7 Control Measures for Water Pollution 2.8 Effects of Water Pollution 2.9 Role of Agricultural Waste Biomass in Treatments of Polluted Water 2.10 Conclusion Acknowledgement References 3 Phytochemical Extraction From Waste Biomass 3.1 Phytochemical Sources 3.2 Classification 3.2.1 Terpenoids 3.2.1.1 Monoterpenoids 3.2.1.2 Diterpenoids 3.2.1.3 Triterpenoids 3.2.1.4 Sesquiterpenoids 3.2.1.5 Carotenoids 3.2.1.6 Xanthophylls 3.2.2 Polyphenols 3.2.2.1 Phenolic Acids 3.2.2.2 Flavonoids 3.2.2.3 Anthocyanins 3.2.2.4 Coumarins 3.2.2.5 Xanthones 3.2.2.6 Stillbenoids 3.2.2.7 Lignans 3.2.3 Alkaloids 3.2.3.1 Indole Alkaloids 3.2.3.2 Isoquinoline Alkaloids 3.2.3.3 Steroidal Alkaloids 3.2.3.4 Tropane Alkaloids 3.2.3.5 Pyridine Alkaloids 3.2.3.6 Pyrrolizidine Alkaloids 3.2.4 Capsaicinoids 3.2.5 Betalains 3.2.5.1 Betacyanin 3.2.5.2 Betaxanthin 3.2.6 Allium Compounds 3.3 Different Types of Extraction Techniques 3.3.1 Conventional Extraction 3.3.1.1 Soxhlet Extraction 3.3.1.2 Maceration 3.3.1.3 Hydrodistillation 3.3.1.4 Percolation 3.3.1.5 Decoction 3.3.1.6 Reflux Extraction 3.3.2 Non-Conventional Techniques 3.3.2.1 Microwave Assisted Extraction 3.3.2.2 Ultrasound Assisted Extraction 3.3.2.3 Pulse Electric Field Extraction 3.3.2.4 Supercritical Fluid Extraction 3.3.2.5 Pressurized Liquid Extraction 3.3.2.6 High Voltage Electrical Discharge Extraction 3.3.2.7 High Pressure Processing Base Extraction 3.4 Phytochemical Extraction From Different Sources 3.5 Isolation, Purification and Characterization of Phytochemicals From Plant Biomass 3.5.1 Phytochemical Purification From Extract 3.5.2 Structural Elucidation of Phytochemicals 3.5.3 UV-Visible Spectroscopy for Phytochemical Identification 3.5.4 Infrared Spectroscopy of Phytochemicals 3.5.5 Nuclear Magnetic Resonance Spectroscopy 3.5.6 Mass Spectroscopy of Phytochemicals 3.6 Conclusion References 4 Biomass (Agricultural Waste) as Sustainable Reinforcement in Polymer Composite 4.1 Introduction 4.2 Natural Fibres 4.2.1 Properties and Characteristics of Natural (Plant) Fibres 4.3 Natural Fibre-Polymer Composite 4.4 Challenges 4.4.1 Interface 4.4.2 Water Absorption 4.4.3 Chemical Modification 4.4.3.1 Physical Treatment 4.4.3.2 Chemical Treatment 4.5 Processing Techniques 4.6 Pros and Cons of Natural Fibres Compared to Conventional Fibres 4.7 Applications 4.8 Recent Developments and Future Trends 4.9 Summary References 5 Biomass Accretion and Control Strategies in Gas Biofiltration 5.1 Introduction 5.2 Microbial Species in Biofilters 5.2.1 Selection and Proliferation 5.2.2 Inoculation of Biofilters 5.3 Substrate Utilization 5.3.1 Induction 5.3.2 Substrate Interaction 5.3.3 Acclimation 5.3.4 Uptake of Dissolved Compounds 5.3.5 Phagocytosis 5.3.6 Exoenzymes 5.3.7 Aerobic and Anaerobic Metabolism 5.3.8 Toxicity 5.4 The Microbial Community 5.4.1 Longitudinal Stratification 5.4.2 Biofilms in Biofilters 5.4.3 Higher Organisms in Biofilters 5.5 Biomass Clogging 5.6 Conclusions References 6 Enzymatic Biodiesel Production From Biomass 6.1 Introduction 6.2 Biodiesel 6.2.1 Physical Properties 6.2.2 Chemical Properties 6.2.3 Biodiesel Standards 6.3 Biodiesel Production Processes 6.3.1 Direct Use Blending 6.3.2 Microemulsion Process 6.3.3 Thermal Cracking (Pyrolysis) 6.3.4 Reactive Distillation Process 6.3.5 Dual Reactive Distillation 6.3.6 Membrane Technology 6.3.7 The Transesterification Process 6.3.7.1 The Transesterification Process Using Alkali Catalyst 6.3.7.2 The Transesterification Process Using Acid Catalyst 6.3.7.3 Two-Step Transesterification Process 6.3.8 Transesterification Through Enzymatic Technology 6.3.8.1 Extracellular Lipase 6.3.8.2 Intracellular Lipase 6.3.8.3 Substrate 6.3.8.4 Acyl Acceptor 6.3.8.5 Bio-Reactor Design 6.4 Effect of Solvents On the Production of Biodiesel 6.5 Merits of Biodiesel 6.6 De-Merits of Biodiesel 6.7 Conclusion References 7 Catalytic Cracking of Jatropha Curcas Non-Edible Oil to Hydrocarbons of Gasoline Fraction: Optimization Studies Through … 7.1 Introduction 7.2 Literature Review 7.2.1 Jatropha Curcas 7.2.2 Catalysts 7.2.3 Catalytic Cracking 7.2.4 Biofuels 7.3 Materials and Methods 7.3.1 Materials and Characterization 7.3.2 Experimental Set-Up and Methodology 7.3.3 Mathematical Model and Design of Experiments 7.3.4 Product Characterization 7.4 Results and Discussions 7.4.1 Catalyst Characterization 7.4.2 Statistical Analysis for Gas, Liquid and Gasoline Fraction Hydrocarbons 7.4.3 Response Surface Plots 7.4.4 ANOVA Analysis 7.5 Conclusions Acknowledgement References 8 Production of Hydrogen From Waste Biomass 8.1 Introduction 8.2 Biomass 8.3 Biomass Feedstocks 8.4 Biomass-Based Hydrogen Processing Methods 8.4.1 Thermochemical Methods 8.4.1.1 Biomass Pyrolysis 8.4.1.2 Biomass Gasification 8.4.2 Biological Methods 8.4.2.1 Direct Biophotolysis 8.4.2.2 Indirect Biophotolysis 8.4.2.3 Biological Water–Gas Shift (BWGS) Reaction 8.4.2.4 Photo Fermentation 8.4.2.5 Dark Fermentation 8.5 Separation of Hydrogen Produced 8.6 Summary References 9 Microbial Mediated Waste Management and Bioenergy Production 9.1 Introduction 9.1.1 Microbial Mediated Biomass Production 9.1.2 Micro-Algae Biomass 9.2 Contributions of Microbes in Waste Management 9.2.1 Microbes in Organic Waste Management 9.2.2 Microbes in Inorganic Waste Management 9.2.2.1 Mechanisms in Microbial Mediated Waste Management 9.3 Microbial Mediated Bioenergy Production 9.4 Contributions of Microbes to Waste Management and Bioenergy Production 9.4.1 Role of Bacteria in Bioenergy Production 9.4.2 Role of Fungus in Bioenergy Production 9.4.3 Role of Algae in Bioenergy Production 9.5 Microbial Fuel Cell (MFC) 9.6 Conclusion References 10 Use of Waste Biomass as Remediator for Environmental Pollution 10.1 Introduction 10.2 A Brief Introduction of Waste Biomass 10.3 Role of Biomass in Environmental Pollution 10.3.1 Air 10.3.2 Water 10.3.3 Soil 10.4 Overall Impact On Human Health 10.5 Scope for Utilization of Biomass 10.6 Conclusion Acknowledgement References 11 Recent Trends in Biomass Conservation and Management 11.1 Statement of Problem and Objectives 11.2 Biomass Potentials and Usage 11.3 Electricity, Ethanol, and Hydrogen From Biomass 11.4 Biomass, Energy, and Stakeholders in India 11.5 Major Problems in Biomass Conservation and Management 11.6 Recent Trends in Biomass Conservation 11.6.1 Thermal Energy and Thermal Power 11.6.2 Biogas 11.6.3 Pellet and Briquette Manufacturing 11.7 Biomass Supply Chain Management 11.8 Summary 11.9 Conclusions References 12 Revalorization of Waste Biomass for Preparing Biodegradable Composite Materials 12.1 Introduction 12.1.1 Plastic Waste 12.1.2 Lignocellulosic Fibres 12.1.3 Cellulose, Microcrystalline Cellulose, and Nanocellulose 12.2 Pretreatments/Surface Modifications of Lignocellulosic Fibres 12.2.1 Alkali Treatment 12.2.2 Acetylation Treatment 12.2.3 Silane Treatment 12.2.4 Maleic Anhydride Grafting 12.3 Biodegradable Polymers Used for Composite Preparation 12.3.1 Polylactic Acid 12.3.2 Polyhydroxyalkanoates 12.3.3 Polybutylene Succinate 12.3.4 Starch-Based Thermoplastics 12.3.5 Polyvinyl Alcohol 12.4 PVA Composite Films Reinforced With Lignocellulosic Fibres 12.5 PVA-Starch Composite Films Reinforced With Lignocellulosic Fibres 12.6 Nanocellulose From Agricultural Waste and Effect of Its Reinforcement in PVA Composite Films 12.6.1 Methods of Extraction of Nanocellulose From Microcrystalline Cellulose 12.6.2 Nanocellulose Reinforced PVA Composite Films 12.7 Conclusion References 13 Biomass of Microalgae as Potential Biodiesel Source for Future Energy Needs 13.1 Introduction 13.2 Benefits of Biodiesel 13.3 Microalgae 13.4 Productivity of Microalgae 13.5 Algae Cultivation 13.5.1 Algal Cultivation in the Open Pond 13.5.1.1 Photo-Bioreactors (PBRs) 13.5.1.2 Vertical-Column PBRs 13.5.2 Hydrodynamics and Mass Transfer in PBRs 13.5.3 Productivity of Algae in Outdoor PBRs 13.5.4 PBRs With Mixotrophic Mode of Microalgae Cultivation 13.6 Microalgae Harvesting 13.7 Oil Yield of Microalgae 13.8 Biodiesel Production 13.8.1 Extraction of Lipid 13.8.2 Transesterification of the Lipid 13.9 Production Methods 13.9.1 Batch Process 13.9.2 Supercritical Process 13.9.3 Ultra- and High-Shear In-Line and Batch Reactors 13.9.4 Ultrasonic-Reactor Method 13.9.5 Microwave Method 13.9.6 Lipase-Catalyzed Method 13.10 Major Challenges in Algal Fuel Production 13.11 Conclusion References 14 Waste Biomass Pretreatment Using Novel Materials 14.1 Background 14.2 Potential of Waste Biomass 14.3 Structure of Biomass 14.3.1 Cellulose 14.3.2 Hemicellulose 14.3.3 Lignin 14.4 Biomass Pretreatment 14.4.1 Water Treatments 14.4.1.1 Temperature Between 150°C and 225°C 14.4.1.2 Temperature Between 225°C and 350°C Range 14.4.1.3 Temperature Between the 350°C to 400°C Range 14.4.2 Chemical Pretreatments 14.4.2.1 Acid Pretreatment 14.4.2.2 Alkaline Hydrolysis 14.4.2.3 Solvent Extraction/Organosolv 14.4.2.4 Oxidation 14.4.2.5 Ionic Liquids 14.4.3 Physicochemical Pretreatments 14.4.3.1 Explosion/Autohydrolysis 14.4.3.2 Ammonia Pretreatment 14.4.3.3 Supercritical Fluid Pretreatment 14.4.4 Biological Pretreatments 14.4.4.1 White-Rot Fungi 14.4.4.2 Brown-Rot Fungi 14.4.4.3 Soft-Rot Fungi 14.4.5 Combined Pretreatments 14.4.5.1 Oxidative Lime Pretreatment 14.4.5.2 Supercritical CO2 With Steam Explosion 14.4.5.3 Dilute Acid Pre-Soaking Before Organosolv 14.4.5.4 Alkaline Peroxide Treatment Coupled With Steam Explosion 14.4.5.5 Additional Combined Pretreatment Techniques 14.5 Conclusions Contribution References 15 Corporate Social Accountability in Waste Production and Management 15.1 Introduction 15.2 Waste Generation and Management 15.2.1 The Extractive Industry and Waste 15.2.2 The Throwaway Society and the Accumulation of Waste 15.2.3 Waste Management 15.2.4 Plastic 15.2.5 E-Waste 15.2.6 Recycling 15.3 Corporate Responsibility and Sustainable Development 15.3.1 Recycling and the Role of Corporations 15.3.2 Corporate Responsibility and Irresponsibility 15.3.3 Companies and Profit-Seeking Events 15.4 The Excess Production and Exchange Value of the Product Leading to Waste 15.4.1 Excess Production 15.4.2 Use Value and the Exchange Value of the New Economy 15.5 The Concept of Circular Economy and Waste 15.5.1 Zero Waste Circular Economy—Contradictions 15.5.2 Green Economy and Greenwashing 15.5.3 Apple IPhone and Waste 15.6 The Waste Generation and Management—Requirement of a Comprehensive Method 15.7 Concluding Remarks References Index