دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تصفیه آب ویرایش: نویسندگان: James C.Y. Guo, Wenliang Wang, Junqi Li سری: ISBN (شابک) : 2022010106, 9781003284239 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 433 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 105 مگابایت
در صورت تبدیل فایل کتاب Urban Drainage and Storage Practices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیوه های زهکشی و ذخیره سازی شهری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روشهای زهکشی و ذخیرهسازی شهری بر آخرین پیشرفتها در روشهای طراحی طوفان شهری با استفاده از روشهای زهکشی و ذخیرهسازی برای کنترل کیفیت و کمیت آب تمرکز دارد. این هم رویکردهای مرسوم برای کاهش سیل و هم روشهای کمتأثیر برای افزایش کیفیت آب طوفان را پوشش میدهد. روشهای تئوری، عملی و مدلسازی برای نشان دادن چگونگی ساخت یک سیستم زهکشی و ذخیرهسازی آب طوفان با استفاده از فضای باز شهری و پارکها از طریق استفاده چندگانه از زمین ارائه شدهاند. هر فصل تئوری پسزمینه، آزمایشهای عددی، تصاویر و صفحات گسترده اکسل را ارائه میکند که روشهای طراحی و محاسبه را تشریح میکند. همه حوضه های شهری به عنوان مجموعه ای از صفحات آبشاری برای تخلیه آب طوفان از سقف های بالادست و پارکینگ ها به مناطق چمن پایین دست و بسترهای گیاهی مدل سازی شده اند. سیستم زهکشی به عنوان یک سیستم آبشاری سه لایه با واحدهای مختلف کم ضربه برای رویدادهای خرد، عناصر انتقال برای رویدادهای جزئی و امکانات ذخیره سازی برای رویدادهای کلان طراحی شده است. این کتاب تئوری و عمل طراحی و ساخت یک سیستم آب باران را ارائه می دهد رویکردهای سبز برای طراحی و مدیریت سیستم های آب باران شهری را توضیح می دهد. این متن برای دانشجویان ارشد و فارغ التحصیل در حال مطالعه هیدرولوژی شهری، مهندسی هیدرولیک و مدیریت منابع آب ایده آل است. همچنین برای مهندسانی که به کتاب فنی با مثال های عملی نیاز دارند مفید خواهد بود.
Urban Drainage and Storage Practices focuses on the latest developments in urban stormwater design methods using drainage and storage approaches for both water quality and quantity control. It covers both the conventional approaches to flood mitigation and low-impact methods for stormwater quality enhancement. Theory, practice, and modeling methods are presented to illustrate how to build a holistic stormwater drainage and storage system using urban open space and parks through multiple land use. Each chapter provides background theory, numerical experiments, illustrations, and Excel spreadsheets that outline design and calculation procedures. All urban watersheds are modeled as a series of cascading planes to drain stormwater from upstream roofs and parking lots onto downstream grass areas and vegetal beds. The drainage system is designed as a three-layer cascading system with various low-impact units for micro events, conveyance elements for minor events, and storage facilities for macro events. This book presents the theory and practice of designing and building a stormwater system explains green approaches to designing and managing urban stormwater systems. This text is ideal for senior and graduate students studying urban hydrology, hydraulic engineering, and water resource management. It will also be useful for engineers requiring a technical book with hands-on practical examples.
Cover Half Title Title Page Copyright Page Table of Contents Preface About the Authors Chapter 1 Stormwater Systems 1.1 Urban Stormwater Drainage Systems 1.2 Stormwater Drainage Facilities 1.2.1 Water Quality Facilities 1.2.2 Collection Facilities 1.2.3 Conveyance Facilities 1.2.4 Storage Facilities 1.3 Stormwater Planning 1.4 Stormwater Regional and Local Planning 1.5 Conclusions Homework References Chapter 2 Design Rainfall Distribution 2.1 Hydrologic Cycle 2.2 Rainfall Measurement 2.3 Rainfall Analysis 2.3.1 Continuous Record 2.3.2 Rainfall Depth–Duration and Intensity–Duration Curves 2.4 Rainfall Frequency–Depth Analysis 2.4.1 Rainfall Annual Database 2.4.2 Sample Statistics 2.4.3 Plotting Position 2.4.4 Probability Distributions Gumbel Distribution Exponential Distribution Normal Distribution Pearson Type Iii Distribution 2.4.5 Confidence Limits 2.5 Design Rainfall Information 2.5.1 Technical Paper 40 (TP40) 2.5.2 NOAA Atlas 14 2.5.3 Continuous Precipitation Data 2.6 Design Rainfall Distribution 2.6.1 24-hour Rainfall Distribution Curves 2.6.2 2-hour Design Rainfall Distributions 2.6.3 Derivation of Localized Design Rainfall Distribution 2.7 Conclusions Homework References Chapter 3 Runoff Hydrology 3.1 Watershed Land Uses 3.2 Hydrologic Types of Soils 3.3 Hydrologic Losses 3.3.1 Interception Losses 3.3.2 Infiltration Losses Horton’s Formula Green and Ampt 3.3.3 Movement of the Wetting Front 3.3.4 Depression Losses 3.3.5 Surface Detention Volume 3.4 Excess Rainfall 3.4.1 Seepage Flow Model for Rainfall Reduction 3.4.2 Soil Storage Model for Rainfall Reduction 3.5 Runoff Hydrograph 3.5.1 Runoff Hydrograph Analysis 3.6 Unit Hydrograph and the S-curve 3.6.1 Unit Hydrograph Derived from an Observed Hydrograph 3.6.2 Unit Hydrograph Derived from an S-curve 3.7 Conclusions Homework References Chapter 4 Rational Method 4.1 Rational Method 4.2 Design Rainfall Information 4.3 Volume-based Runoff Coefficient 4.3.1 Runoff Coefficients 4.3.2 Weighted Runoff Coefficient 4.4 Time of Concentration 4.4.1 Time of Concentration for Existing Conditions 4.4.2 Time of Concentration for Future Conditions 4.4.3 Empirical Formulas for Time of Concentration 4.5 Rational Hydrograph Method 4.6 Applicability Limit Homework References Chapter 5 Unit Hydrograph 5.1 Agricultural Synthetic Unitgraph 5.2 Rational Unit Graph 5.3 Urban Synthetic Unit Graph 5.4 Conclusions Homework References Chapter 6 Kinematic Wave Method 6.1 Kinematic Wave Approach 6.2 Conversion of a Watershed into a Rectangular Plane 6.3 Overland KW Flow 6.4 Kw Dimensionless Unit Graph 6.5 Conclusions Homework References Chapter 7 Kinematic Wave Watershed Modeling 7.1 KW Cascading Flows 7.2 KW Overland Flow 7.3 Numerical Scheme for KW Overland Flow 7.4 Numerical Modeling for KW Overland Flow 7.4.1 Separate Flow System 7.4.2 Cascading Flow System 7.5 Kinematic Wave Channel Flow 7.6 Conclusions Homework References Chapter 8 Open-Channel Hydraulics 8.1 Classification of Channels 8.2 Classification of Channel Flows 8.3 Slopes in Channel Flow 8.4 Cross-sectional Elements 8.5 Empirical Formula 8.6 Roughness Coefficient 8.7 Normal Flow 8.8 Non-Uniform Flow 8.9 Conclusions Homework References Chapter 9 Street Conveyance Hydraulics 9.1 Street Hydraulic Conveyance Capacity 9.1.1 Straight Cross-Section 9.1.2 Composite Street Section 9.2 Traffic Safety with Street Runoff 9.3 Discharge Reduction Method 9.4 Allowable Street Hydraulic Conveyance Capacity 9.5 Conclusions Homework References Chapter 10 Inlet Hydraulics 10.1 Types of Inlet 10.1.1 Grate Inlet 10.1.2 Curb-opening Inlet 10.1.3 Combination Inlet 10.1.4 Slotted Inlet 10.2 Inlet Hydraulics 10.3 Determination of Design Discharge 10.4 Clogging Factor 10.5 Grate Inlet on a Continuous Grade 10.6 Grate Inlet in a Sump 10.7 Curb Opening on a Grade 10.8 Curb-opening Inlet in a Sump 10.9 Slotted Inlet 10.10 Combination Inlet 10.11 Carryover Flow 10.12 Conclusions Homework References Chapter 11 Roadway Storage Basin 11.1 Stormwater Detention Volume 11.1.1 In-stream Detention Volume 11.1.2 Off-stream Detention Volume 11.2 Storage Volume at a Street Sump Inlet 11.2.1 Storage Volume at Sump Inlet 11.2.2 Sump Street Storage Capacity Volume for H < Hc Volume for H > Hc 11.3 Conclusions Homework References Chapter 12 Culvert Hydraulics 12.1 Culvert Layout and Design Considerations 12.2 Culvert Sizing 12.3 Culvert Hydraulics 12.3.1 Culvert Hydraulics Under Inlet Control 12.3.2 Culvert Hydraulics Under Outlet Control 12.3.3 Determination of Culvert Capacity 12.4 Conclusions Homework References Chapter 13 Storm Sewer System Design 13.1 Layout of Storm Sewer System 13.2 Vertical Profile 13.3 Manhole in Sewer System 13.4 Incoming Laterals 13.5 Classification of Sewers 13.6 Sewer Sizing 13.6.1 Circular Sewers 13.6.2 Arch (elliptical) Sewer Hydraulics 13.6.3 Box Sewer Hydraulics 13.7 Design Constraints 13.8 Design Procedures 13.9 Design Discharge 13.10 Case Study Homework References Chapter 14 Detention Basin Sizing 14.1 Types of Detention Basin 14.1.1 Classification Based on Location 14.2 Design Considerations 14.2.1 Location 14.2.2 Basic Layout 14.2.3 Groundwater Impacts 14.2.4 Inlet and Outlet Works 14.2.5 Other Considerations 14.3 Detention Process 14.4 Allowable Flow Release 14.5 Design Procedure 14.6 Detention Volume 14.7 Preliminary Shaping 14.7.1 Rectangular Basin 14.7.2 Triangular Basin 14.8 Conclusions Homework References Chapter 15 Outlet Work 15.1 Perforated Plate 15.2 Vertical Orifice 15.3 Horizontal Orifice 15.4 Weir Hydraulics 15.4.1 Rectangular Weir 15.4.2 Triangular Weir 15.4.3 Trapezoidal Weir 15.5 Culvert Hydraulics 15.5.1 Outlet-control Culvert Hydraulics 15.5.2 Inlet-control Culvert Hydraulics 15.5.3 Discharge Capacity of Concrete Vault 15.6 Characteristic Curve 15.7 Maintenance and Safety Homework References Chapter 16 Performance of Detention Basin 16.1 Performance Evaluation of Basin 16.1.1 Storage-outflow Curve 16.2 Hydrologic Routing Schemes 16.2.1 Storage Routing Scheme 16.2.2 Outflow Routing Scheme 16.3 Evaluation of Detention Basin 16.4 Conclusions Homework References Chapter 17 Energy Dissipation Basin 17.1 Specific Energy 17.1.1 Critical Flow on Specific Energy Curve 17.1.2 Special Cases for Specific Energy 17.2 Specific Force 17.2.1 Critical Flow on Specific Force Curve 17.2.2 Special Cases for Specific Force Curve 17.3 Stilling Basin 17.3.1 Stilling Basin Under Design 17.3.2 Low Flow Through Stilling Basin 17.4 Plunging Pool 17.4.1 Composite Weir Section on Top of Drop Structure 17.5 Conclusions Homework References Chapter 18 Stormwater Quality Capture Volume 18.1 Review of Urban Drainage Systems 18.2 Filtering and Infiltrating Devices 18.3 Rainfall and Runoff Distributions 18.4 Concept of Runoff Capture 18.5 Runoff Capture Analysis 18.5.1 Runoff Volume Capture Analysis for Single Event 18.5.2 Runoff Volume Capture Analyses for Long-term Records 18.5.3 Runoff Event Capture Ratio 18.6 Dimensionless Runoff Capture Formula 18.7 Empirical Formula for WQCV 18.8 Water Quality Peak Flow 18.9 Conclusions Homework References Chapter 19 Porous Basin 19.1 Lid Site Plan 19.2 Incentive Index for LID Site 19.2.1 Area-Weighted Imperviousness 19.2.2 Volume-Weighted Imperviousness 19.3 Cascading Drainage Pattern 19.4 Types of LID Device 19.4.1 Porous Basins 19.4.2 Porous Pavement 19.5 Design Volume for a Porous Basin 19.5.1 WQCV for Basin Sizing 19.5.2 Pore Storage Capacity in Filtering Layers 19.6 Seepage Flow and Drain Time 19.6.1 Case 1: Without a Cap Orifice 19.6.2 Case 2: With a Cap Orifice 19.7 Dry Time of Sub-base 19.8 Clogging Effect and Lifecyle 19.9 Evaluation of LID Performance 19.10 Conclusions Homework References Chapter 20 Stormwater Regional Planning 20.1 Design Flow as Loading to System 20.2 Runoff Flow Loading Approach 20.3 Conveyance and Storage Facilities 20.4 Interim Facilities for Urban Renewal 20.4.1 Temporary Channel and Off-stream Storage Systems 20.4.3 Temporary Flood Gate and Pump Systems 20.5 Conclusions References Index