دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd ed. 2021
نویسندگان: Michel Talagrand
سری: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, 60; 60
ISBN (شابک) : 3030825949, 9783030825942
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 727
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Upper and Lower Bounds for Stochastic Processes: Decomposition Theorems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کران بالا و پایین برای فرآیندهای تصادفی: قضایای تجزیه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents 1 What Is This Book About? 1.1 Philosophy 1.2 What Is Chaining? 1.3 The Kolmogorov Conditions 1.4 Chaining in a Metric Space: Dudley\'s Bound 1.5 Overall Plan of the Book 1.6 Does This Book Contain any Ideas? 1.7 Overview by Chapters 1.7.1 Gaussian Processes and the Generic Chaining 1.7.2 Trees and Other Measures of Size 1.7.3 Matching Theorems 1.7.4 Warming Up with p-Stable Processes 1.7.5 Bernoulli Processes 1.7.6 Random Fourier Series and Trigonometric Sums 1.7.7 Partition Scheme for Families of Distances 1.7.8 Peaky Parts of Functions 1.7.9 Proof of the Bernoulli Conjecture 1.7.10 Random Series of Functions 1.7.11 Infinitely Divisible Processes 1.7.12 Unfulfilled Dreams 1.7.13 Empirical Processes 1.7.14 Gaussian Chaos 1.7.15 Convergence of Orthogonal Series: Majorizing Measures 1.7.16 Shor\'s Matching Theorem 1.7.17 The Ultimate Matching Theorem in Dimension Three 1.7.18 Applications to Banach Space Theory Part I The Generic Chaining 2 Gaussian Processes and the Generic Chaining 2.1 Overview 2.2 Measuring the Size of the Supremum 2.3 The Union Bound and Other Basic Facts 2.4 The Generic Chaining 2.5 Entropy Numbers 2.6 Rolling Up Our Sleeves: Chaining in the Simplex 2.7 Admissible Sequences of Partitions 2.8 Functionals 2.9 Partitioning Schemes 2.10 Gaussian Processes: The Majorizing Measure Theorem 2.11 Gaussian Processes as Subsets of a Hilbert Space 2.12 Dreams 2.13 A First Look at Ellipsoids 2.14 Rolling Up Our Sleeves: Chaining on Ellipsoids 2.15 Continuity of Gaussian Processes 2.16 Notes and Comments 3 Trees and Other Measures of Size 3.1 Trees 3.1.1 Separated Trees 3.1.2 Organized Trees 3.1.3 Majorizing Measures 3.2 Rolling Up Our Sleeves: Trees in Ellipsoids 3.3 Fernique\'s Functional 3.3.1 Fernique\'s Functional 3.3.2 Fernique\'s Convexity Argument 3.3.3 From Majorizing Measures to Sequencesof Partitions 3.4 Witnessing Measures 3.5 An Inequality of Fernique 4 Matching Theorems 4.1 The Ellipsoid Theorem 4.2 Partitioning Scheme II 4.3 Matchings 4.4 Discrepancy Bounds 4.5 The Ajtai-Komlós-Tusnády Matching Theorem 4.5.1 The Long and Instructive Way 4.5.2 The Short and Magic Way 4.6 Lower Bound for the Ajtai-Komlós-Tusnády Theorem 4.7 The Leighton-Shor Grid Matching Theorem 4.8 Lower Bound for the Leighton-Shor Theorem 4.9 For the Expert Only 4.10 Notes and Comments Part II Some Dreams Come True 5 Warming Up with p-Stable Processes 5.1 p-Stable Processes as Conditionally Gaussian Processes 5.2 A Lower Bound for p-Stable Processes 5.3 Philosophy 5.4 Simplification Through Abstraction 5.5 1-Stable Processes 5.6 Where Do We Stand? 6 Bernoulli Processes 6.1 Bernoulli r.v.s 6.2 Boundedness of Bernoulli Processes 6.3 Concentration of Measure 6.4 Sudakov Minoration 6.5 Comparison Principle 6.6 Control in ∞ Norm 6.7 Peaky Parts of Functions 6.8 Discrepancy Bounds for Empirical Processes 6.9 Notes and Comments 7 Random Fourier Series and Trigonometric Sums 7.1 Translation-Invariant Distances 7.2 Basics 7.2.1 Simplification Through Abstraction 7.2.2 Setting 7.2.3 Upper Bounds in the Bernoulli Case 7.2.4 Lower Bounds in the Gaussian Case 7.3 Random Distances 7.3.1 Basic Principles 7.3.2 A General Upper Bound 7.3.3 A Side Story 7.4 The Marcus-Pisier Theorem 7.4.1 The Marcus-Pisier Theorem 7.4.2 Applications of the Marcus-Pisier Theorem 7.5 Statement of Main Results 7.5.1 General Setting 7.5.2 Families of Distances 7.5.3 Lower Bounds 7.5.4 Upper Bounds 7.5.5 Highlighting the Magic of Theorem 7.5.5 7.5.6 Combining Upper and Lower Bounds 7.5.7 An Example: Tails in u-p 7.5.8 The Decomposition Theorem 7.5.9 Convergence 7.6 A Primer on Random Sets 7.7 Proofs, Lower Bounds 7.8 Proofs, Upper Bounds 7.8.1 Road Map 7.8.2 A Key Step 7.8.3 Road Map: An Overview of DecompositionTheorems 7.8.4 Decomposition Theorem in the Bernoulli Case 7.8.5 Upper Bounds in the Bernoulli Case 7.8.6 The Main Upper Bound 7.8.7 Sums with Few Non-zero Terms 7.9 Proof of the Decomposition Theorem 7.9.1 Constructing Decompositions 7.9.2 Proof of Proposition 7.9.1 7.10 Proofs, Convergence 7.11 Further Proofs 7.11.1 Alternate Proof of Proposition 7.5.13 7.11.2 Proof of Theorem 7.5.18 7.12 Explicit Computations 7.13 Vector-Valued Series: A Theorem of Fernique 7.14 Notes and Comments 8 Partitioning Scheme and Families of Distances 8.1 The Partitioning Scheme 8.2 Tail Inequalities 8.3 The Structure of Certain Canonical Processes 9 Peaky Part of Functions 9.1 Road Map 9.2 Peaky Part of Functions, II 9.3 Philosophy 9.4 Chaining for Bernoulli Processes 9.5 Notes and Comments 10 Proof of the Bernoulli Conjecture 10.1 Latała\'s Principle 10.2 Philosophy, I 10.3 Chopping Maps and Functionals 10.3.1 Chopping Maps 10.3.2 Basic Facts 10.3.3 Functionals 10.4 Philosophy, II 10.5 Latała\'s Step 10.6 Philosophy, III 10.7 A Decomposition Lemma 10.8 Building the Partitions 10.9 Philosophy, IV 10.10 The Key Inequality 10.11 Philosophy, V 10.12 Proof of the Latała-Bednorz Theorem 10.13 Philosophy, VI 10.14 A Geometric Characterization of b(T) 10.15 Lower Bounds from Measures 10.16 Notes and Comments 11 Random Series of Functions 11.1 Road Map 11.2 Random Series of Functions: General Setting 11.3 Organization of the Chapter 11.4 The Main Lemma 11.5 Construction of the Majorizing Measure Using Convexity 11.6 From Majorizing Measures to Partitions 11.7 The General Lower Bound 11.8 The Giné-Zinn Inequalities 11.9 Proof of the Decomposition Theorem for EmpiricalProcesses 11.10 The Decomposition Theorem for Random Series 11.11 Selector Processes and Why They Matter 11.12 Proving the Generalized Bernoulli Conjecture 11.13 Notes and Comments 12 Infinitely Divisible Processes 12.1 Poisson r.v.s and Poisson Point Processes 12.2 A Shortcut to Infinitely Divisible Processes 12.3 Overview of Results 12.3.1 The Main Lower Bound 12.3.2 The Decomposition Theorem for Infinitely Divisible Processes 12.3.3 Upper Bounds Through Bracketing 12.3.4 Harmonizable Infinitely Divisible Processes 12.3.5 Example: Harmonizable p-Stable Processes 12.4 Proofs: The Bracketing Theorem 12.5 Proofs: The Decomposition Theorem for Infinitely Divisible Processes 12.6 Notes and Comments 13 Unfulfilled Dreams 13.1 Positive Selector Processes 13.2 Explicitly Small Events 13.3 My Lifetime Favorite Problem 13.4 Classes of Sets Part III Practicing 14 Empirical Processes, II 14.1 Bracketing 14.2 The Class of Squares of a Given Class 14.3 When Not to Use Chaining 15 Gaussian Chaos 15.1 Order 2 Gaussian Chaos 15.1.1 Basic Facts 15.1.2 When T Is Small for the Distance d∞ 15.1.3 Covering Numbers 15.1.4 Another Way to Bound S(T) 15.1.5 Yet Another Way to Bound S(T) 15.2 Tails of Multiple-Order Gaussian Chaos 15.3 Notes and Comments 16 Convergence of Orthogonal Series: Majorizing Measures 16.1 A Kind of Prologue: Chaining in a Metric Space and Pisier\'s Bound 16.2 Introduction to Orthogonal Series: Paszkiewicz\'s Theorem 16.3 Recovering the Classical Results 16.4 Approach to Paszkiewicz\'s Theorem: Bednorz\'s Theorem 16.5 Chaining, I 16.6 Proof of Bednorz\'s Theorem 16.7 Permutations 16.8 Chaining, II 16.9 Chaining, III 16.10 Notes and Comments 17 Shor\'s Matching Theorem 17.1 Introduction 17.2 The Discrepancy Theorem 17.3 Lethal Weakness of the Approach 18 The Ultimate Matching Theorem in Dimension 3 18.1 Introduction 18.2 Regularization of φ 18.3 Discretization 18.4 Discrepancy Bound 18.5 Geometry 18.6 Probability, I 18.7 Haar Basis Expansion 18.8 Probability, II 18.9 Final Effort 19 Applications to Banach Space Theory 19.1 Cotype of Operators 19.1.1 Basic Definitions 19.1.2 Operators from ∞N 19.1.3 Computing the Cotype-2 Constant with Few Vectors 19.2 Unconditionality 19.2.1 Classifying the Elements of B1 19.2.2 Subsets of B1 19.2.3 1-Unconditional Sequences and Gaussian Measures 19.3 Probabilistic Constructions 19.3.1 Restriction of Operators 19.3.2 The Λ(p)-Problem 19.4 Sidon Sets A Discrepancy for Convex Sets A.1 Introduction A.2 Elements of Proof of the Upper Bound A.3 The Lower Bound B Some Deterministic Arguments B.1 Hall\'s Matching Theorem B.2 Proof of Lemma 4.7.11 B.3 The Shor-Leighton Grid Matching Theorem B.4 End of Proof of Theorem 17.2.1 B.5 Proof of Proposition 17.3.1 B.6 Proof of Proposition 17.2.4 C Classical View of Infinitely Divisible Processes C.1 Infinitely Divisible Random Variables C.2 Infinitely Divisible Processes C.3 Representation C.4 p-Stable Processes D Reading Suggestions D.1 Partition Schemes D.2 Geometry of Metric Spaces D.3 Cover Times D.4 Matchings D.5 Super-concentration in the Sense of S. Chatterjee D.6 High-Dimensional Statistics E Research Directions E.1 The Latała-Bednorz Theorem E.2 The Ultimate Matching Conjecture E.3 My Favorite Lifetime Problem E.4 From a Set to Its Convex Hull F Solutions of Selected Exercises G Comparison with the First Edition Bibliography Index