دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [4 ed.] نویسندگان: Joel R. Hass, Christopher E Heil, Przemyslaw Bogacki, Maurice D Weir, George B. Thomas سری: ISBN (شابک) : 0134995546, 9780134995540 ناشر: Pearson سال نشر: 2019 تعداد صفحات: 1104 [1210] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 43 Mb
در صورت تبدیل فایل کتاب University Calculus: Early Transcendentals (4th Edition) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب دانشگاه: Early Transcendentals (چاپ چهارم) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از نمایشگر eText وب Pearson MyMathLab با مقداری بازرس شبکه فایرفاکس و یک اسکریپت ساده برداشته شده است. صفحات ترکیب شده با آکروبات. من قبلاً برای این هزینه پرداخت کردم، اما امیدوارم این به دانشجویان آینده کمک کند.
Ripped from Pearson MyMathLab's web eText viewer with some Firefox Network Inspector-ing and a simple script. Pages combined with Acrobat. I already paid for this, but I hope this helps future students.
Contents Preface 1. Functions 1.1 Functions and Their Graphs 1.2 Combining Functions; Shifting and Scaling Graphs 1.3 Trigonometric Functions 1.4 Graphing with Software 1.5 Exponential Functions 1.6 Inverse Functions and Logarithms 2. Limits and Continuity 2.1 Rates of Change and Tangent Lines to Curves 2.2 Limit of a Function and Limit Laws 2.3 The Precise Definition of a Limit 2.4 One-Sided Limits 2.5 Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs CHAPTER 2 Practice Exercises 3. Derivatives 3.1 Tangent Lines and the Derivative at a Point 3.2 The Derivative as a Function 3.3 Differentiation Rules 3.4 The Derivative as a Rate of Change 3.5 Derivatives of Trigonometric Functions 3.6 The Chain Rule 3.7 Implicit Differentiation 3.8 Derivatives of Inverse Functions and Logarithms 3.9 Inverse Trigonometric Functions 3.10 Related Rates 3.11 Linearization and Differentials CHAPTER 3 Questions to Guide Your Review CHAPTER 3 Additional and Advanced Exercises 4. Applications of Derivatives 4.1 Extreme Values of Functions on Closed Intervals 4.2 The Mean Value Theorem 4.3 Monotonic Functions and the First Derivative Test 4.4 Concavity and Curve Sketching 4.5 Indeterminate Forms and L’Hôpital’s Rule 4.6 Applied Optimization 4.7 Newton’s Method 4.8 Antiderivatives CHAPTER 4 Questions to Guide Your Review CHAPTER 4 Practice Exercises CHAPTER 4 Additional and Advanced Exercises 5. Integrals 5.1 Area and Estimating with Finite Sums 5.2 Sigma Notation and Limits of Finite Sums 5.3 The Definite Integral 5.4 The Fundamental Theorem of Calculus 5.5 Indefinite Integrals and the Substitution Method 5.6 Definite Integral Substitutions and the Area Between Curves CHAPTER 5 Questions to Guide Your Review CHAPTER 5 Practice Exercises CHAPTER 5 Additional and Advanced Exercises 6. Applications of Definite Integrals 6.1 Volumes Using Cross-Sections 6.2 Volumes Using Cylindrical Shells 6.3 Arc Length 6.4 Areas of Surfaces of Revolution 6.5 Work 6.6 Moments and Centers of Mass CHAPTER 6 Questions to Guide Your Review CHAPTER 6 Practice Exercises CHAPTER 6 Additional and Advanced Exercises 7. Integrals and Transcendental Functions 7.1 The Logarithm Defined as an Integral 7.2 Exponential Change and Separable Differential Equations 7.3 Hyperbolic Functions CHAPTER 7 Questions to Guide Your Review CHAPTER 7 Practice Exercises CHAPTER 7 Additional and Advanced Exercises 8. Techniques of Integration 8.1 Integration by Parts 8.2 Trigonometric Integrals 8.3 Trigonometric Substitutions 8.4 Integration of Rational Functions by Partial Fractions 8.5 Integral Tables and Computer Algebra Systems 8.6 Numerical Integration 8.7 Improper Integrals CHAPTER 8 Questions to Guide Your Review CHAPTER 8 Practice Exercises CHAPTER 8 Additional and Advanced Exercises 9. Infinite Sequences and Series 9.1 Sequences 9.2 Infinite Series 9.3 The Integral Test 9.4 Comparison Tests 9.5 Absolute Convergence; The Ratio and Root Tests 9.6 Alternating Series and Conditional Convergence 9.7 Power Series 9.8 Taylor and Maclaurin Series 9.9 Convergence of Taylor Series 9.10 Applications of Taylor Series CHAPTER 9 Questions to Guide Your Review CHAPTER 9 Practice Exercises CHAPTER 9 Additional and Advanced Exercises 10. Parametric Equations and Polar Coordinates 10.1 Parametrizations of Plane Curves 10.2 Calculus with Parametric Curves 10.3 Polar Coordinates 10.4 Graphing Polar Coordinate Equations 10.5 Areas and Lengths in Polar Coordinates CHAPTER 10 Questions to Guide Your Review CHAPTER 10 Practice Exercises CHAPTER 10 Additional and Advanced Exercises 11. Vectors and the Geometry of Space 11.1 Three-Dimensional Coordinate Systems 11.2 Vectors 11.3 The Dot Product 11.4 The Cross Product 11.5 Lines and Planes in Space 11.6 Cylinders and Quadric Surfaces CHAPTER 11 Questions to Guide Your Review CHAPTER 11 Practice Exercises CHAPTER 11 Additional and Advanced Exercises 12. Vector-Valued Functions and Motion in Space 12.1 Curves in Space and Their Tangents 12.2 Integrals of Vector Functions; Projectile Motion 12.3 Arc Length in Space 12.4 Curvature and Normal Vectors of a Curve 12.5 Tangential and Normal Components of Acceleration 12.6 Velocity and Acceleration in Polar Coordinates CHAPTER 12 Questions to Guide Your Review CHAPTER 12 Practice Exercises CHAPTER 12 Additional and Advanced Exercises 13. Partial Derivatives 13.1 Functions of Several Variables 13.2 Limits and Continuity in Higher Dimensions 13.3 Partial Derivatives 13.4 The Chain Rule 13.5 Directional Derivatives and Gradient Vectors 13.6 Tangent Planes and Differentials 13.7 Extreme Values and Saddle Points 13.8 Lagrange Multipliers CHAPTER 13 Questions to Guide Your Review CHAPTER 13 Practice Exercises CHAPTER 13 Additional and Advanced Exercises 14. Multiple Integrals 14.1 Double and Iterated Integrals over Rectangles 14.2 Double Integrals over General Regions 14.3 Area by Double Integration 14.4 Double Integrals in Polar Form 14.5 Triple Integrals in Rectangular Coordinates 14.6 Applications 14.7 Triple Integrals in Cylindrical and Spherical Coordinates 14.8 Substitutions in Multiple Integrals CHAPTER 14 Questions to Guide Your Review CHAPTER 14 Practice Exercises CHAPTER 14 Additional and Advanced Exercises 15. Integrals and VectorFields 15.1 Line Integrals of Scalar Functions 15.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 15.3 Path Independence, Conservative Fields, and Potential Functions 15.4 Green’s Theorem in the Plane 15.5 Surfaces and Area 15.6 Surface Integrals 15.7 Stokes’ Theorem 15.8 The Divergence Theorem and a Unified Theory CHAPTER 15 Questions to Guide Your Review CHAPTER 15 Practice Exercises CHAPTER 15 Additional and Advanced Exercises 16. First-Order Differential Equations 16.1 Solutions, Slope Fields, and Euler’s Method 16.2 First-Order Linear Equations 16.3 Applications 16.4 Graphical Solutions of Autonomous Equations 16.5 Systems of Equations and Phase Planes CHAPTER 16 Questions to Guide Your Review CHAPTER 16 Practice Exercises CHAPTER 16 Additional and Advanced Exercises ANSWERS TO ODD-NUMBERED EXERCISES 17. Second-Order Differential Equations 17.1 Second-Order Linear Equations 17.2 Nonhomogeneous Linear Equations 17.3 Applications 17.4 Euler Equations 17.5 Power-Series Solutions ANSWERS TO ODD-NUMBERED EXERCISES Appendix A A.1 Real Numbers and the Real Line A.2 Mathematical Induction A.3 Lines and Circles A.4 Conic Sections A.5 Proofs of Limit Theorems A.6 Commonly Occurring Limits A.7 Theory of the Real Numbers A.8 Complex Numbers A.9 The Distributive Law for Vector Cross Products A.10 The Mixed Derivative Theorem and the Increment Theorem Appendix B B.1 Relative Rates of Growth B.2 Probability B.3 Conics in Polar Coordinates B.4 Taylor’s Formula for Two Variables B.5 Partial Derivatives with Constrained Variables ANSWERS TO ODD-NUMBERED EXERCISES ANSWERS TO ODD-NUMBERED EXERCISES Chapter 1. SECTION 1.1, pp. 11–13 SECTION 1.2, pp. 18–21 SECTION 1.3, pp. 27–29 SECTION 1.4, p. 33 SECTION 1.5, pp. 37–38 Chapter 2. SECTION 2.1, pp. 56–58 SECTION 2.3, pp. 74–77 PRACTICE EXERCISES, pp. 111–112 ADDITIONAL AND ADVANCED EXERCISES, pp. 118–120 SECTION 3.3, pp. 137–139 SECTION 3.5, pp. 152–154 SECTION 3.6, pp. 159–162 SECTION 3.8, pp. 176–177 SECTION 3.10, pp. 189–192 ADDITIONAL AND ADVANCED EXERCISES, pp. 208–211 SECTION 4.2, pp. 226–228 SECTION 4.4, pp. 242–246 SECTION 4.5, pp. 253–254 SECTION 4.7, pp. 269–271 PRACTICE EXERCISES, pp. 282–286 ADDITIONAL AND ADVANCED EXERCISES, pp. 286–289 Chapter 5. SECTION 5.1, pp. 298–300 SECTION 5.5, pp. 338–339 PRACTICE EXERCISES, pp. 350–353 SECTION 6.3, pp. 379–381 PRACTICE EXERCISES, pp. 402–403 PRACTICE EXERCISES, pp. 433–434 SECTION 8.3, pp. 454–455 SECTION 8.6, pp. 476–478 ADDITIONAL AND ADVANCED EXERCISES, pp. 492–494 SECTION 9.2, pp. 515–517 SECTION 9.4, pp. 528–529 SECTION 9.7, pp. 551–554 SECTION 9.10, pp. 572–574 Chapter 10. SECTION 10.1, pp. 586–588 SECTION 10.3, pp. 601–602 SECTION 10.5, pp. 610–611 ADDITIONAL AND ADVANCED EXERCISES, p. 613 SECTION 11.3, pp. 634–636 SECTION 11.5, pp. 649–651 PRACTICE EXERCISES, pp. 657–659 ADDITIONAL AND ADVANCED EXERCISES, pp. 659–661 SECTION 12.2, pp. 675–677 SECTION 12.5, p. 689–690 Chapter 13. SECTION 13.1, pp. 812–814 SECTION 13.2, pp. 820–823 SECTION 13.4, pp. 842–844 SECTION 13.6, pp. 860–863 SECTION 13.8, pp. 879–882 ADDITIONAL AND ADVANCED EXERCISES, pp. 894–896 SECTION 14.2, pp. 784–793 SECTION 14.3, p. 793–796 SECTION 14.4, pp. 796–803 SECTION 14.7, pp. 820–831 SECTION 14.8, pp. 832–841 PRACTICE EXERCISES, pp. 842–844 SECTION 15.3, pp. 867–878 SECTION 15.7, pp. 910–923 APPENDIX A.4, PP. AP-22–AP-23 APPENDIX A.8, PP. AP-37–AP-38 Applications Index Subject Index A B, C D E F G, H, I J, K, L M N, O, P Q, R S T U, V W, X, Y, Z A Brief Table of Integrals Credits Basic Algebra Formulas Geometry Formulas Trigonometry Formulas Series Vector Operator Formulas (Cartesian Form)