دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [5 ed.]
نویسندگان: D. Aversa
سری:
ISBN (شابک) : 9781803238531
ناشر:
سال نشر: 2022
تعداد صفحات: 309
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب Unity Artificial Intelligence Programming: Add powerful, believable, and fun AI entities in your game with the power of Unity به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برنامه نویسی هوش مصنوعی یونیتی: با قدرت یونیتی موجودیت های هوش مصنوعی قدرتمند، باورپذیر و سرگرم کننده را به بازی خود اضافه کنید. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Copyright and Credits Table of Contents Part 1:Basic AI Chapter 1: Introduction to AI Understanding AI AI in video games AI techniques for video games Finite state machines Randomness and probability in AI The sensor system Flocking, swarming, and herding Path following and steering A* pathfinding Navigation meshes Behavior trees Locomotion Summary Chapter 2: Finite State Machines Technical requirements Implementing the player's tank Initializing the Tank object Shooting the bullet Controlling the tank Implementing a Bullet class Setting up waypoints Creating the abstract FSM class Using a simple FSM for the enemy tank AI The Patrol state The Chase state The Attack state The Dead state Taking damage Using an FSM framework The AdvancedFSM class The FSMState class The state classes The NPCTankController class Summary Chapter 3: Randomness and Probability Technical requirements Introducing randomness in Unity Randomness in computer science The Unity Random class A simple random dice game Learning the basics of probability Independent and correlated events Conditional probability Loaded dice Exploring more examples of probability in games Character personalities Perceived randomness FSM with probability Dynamically adapting AI skills Creating a slot machine A random slot machine Weighted probability A near miss Summary Further reading Chapter 4: Implementing Sensors Technical requirements Basic sensory systems Scene setup The player's tank and the aspect class The player's tank Aspect AI characters Sense Sight Touch Testing Summary Part 2:Movement and Navigation Chapter 5: Flocking Technical requirements Basic flocking behavior Individual behavior Controller Alternative implementation FlockController Summary Chapter 6: Path Following and Steering Behaviors Chapter 7: A* Pathfinding Technical requirements Revisiting the A* algorithm Implementing the A* algorithm Node PriorityQueue The GridManager class The AStar class The TestCode class Setting up the scene Testing the pathfinder Summary Chapter 8: Navigation Mesh Technical requirements Setting up the map Navigation static Baking the NavMesh NavMesh agent Updating an agent's destinations Setting up a scene with slopes Baking navigation areas with different costs Using Off Mesh Links to connect gaps between areas Generated Off Mesh Links Manual Off Mesh Links Summary Part 3:Advanced AI Chapter 9: Behavior Trees Technical requirements Introduction to BTs A simple example – a patrolling robot Implementing a BT in Unity with Behavior Bricks Set up the scene Implement a day/night cycle Design the enemy behavior Implementing the nodes Building the tree Attach the BT to the enemy Summary Further reading Chapter 10: Procedural Content Generation Technical requirements Understanding Procedural Content Generation in games Kinds of Procedural Content Generation Implementing a simple goblin name generator Generating goblin names Completing the goblin description Learning how to use Perlin noise Built-in Unity Perlin noise Generating random maps and caves Cellular automata Implementing a cave generator Rendering the generated cave Summary Further reading Chapter 11: Machine Learning in Unity Technical requirements The Unity Machine Learning Agents Toolkit Installing the ML-Agents Toolkit Installing Python and PyTorch on Windows Installing Python and PyTorch on macOS and Unix-like systems Using the ML-Agents Toolkit – a basic example Creating the scene Implementing the code Adding the final touches Testing the learning environment Training an agent Summary Further reading Chapter 12: Putting It All Together Technical requirements Developing the basic game structure Adding automated navigation Creating the NavMesh Setting up the agent Fixing the GameManager script Creating decision-making AI with FSM Summary Index