دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: András Kovács, Giorgio Vassallo, Paul O'Hara سری: ISBN (شابک) : 1800611293, 9781800611290 ناشر: World Scientific Publishing سال نشر: 2022 تعداد صفحات: 485 [486] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 36 Mb
در صورت تبدیل فایل کتاب Unified Field Theory and Occam's Razor: Simple Solutions to Deep Questions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه میدان یکپارچه و تیغ اوکام: راه حل های ساده برای سوالات عمیق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Unified Field Theory was an expression first used by Einstein in his attempt to unify general relativity with electromagnetism. Unified Field Theory and Occam's Razor attempts to provide real answers to foundational questions related to this unification and should be of high interest to innovative scientists. A diverse group of contributing authors approach an old problem with an open-mindedness that presents a new and fresh perspective. The following topics are discussed in detail in the hope of a fruitful dialogue with all who are interested in this subject:
This highly original book brings together theoretical researchers and experimentalists specialized in the areas of mathematics and epistemology, theoretical and experimental physics, engineering, and technology. For years they have worked independently on topics related to the foundations and unity of physics and have had numerous overlapping ideas in terms of using Clifford algebra and spinors. Within the book, new technology applications are outlined and theoretical results are complemented by interpretations of experimental data.
Contents Preface About the Authors Mathematical Preliminaries 0.1. Clifford Algebra Introduction 0.2. The Geometry of Clifford Algebra 0.2.1. Reflection and rotation of vectors 0.2.2. Clifford reversion 0.3. Exterior Algebra and Wedge Products 0.4. Tensors 0.5. Singlet State 0.6. Group Actions 0.7. Harmonic Functions 0.8. Notation for Quantum Mechanics 0.8.1. Definition of quantum states 0.8.2. Probability and quantum states 0.8.3. Spin 0.8.4. Indistinguishability 0.8.5. Spin entanglement into opposite chirality 0.9. Spinors 0.9.1. Introduction to spinors 0.9.2. An alternative construction of the eigenvector equation 0.9.3. Spacetime vectors under Cartan’s approach 0.9.4. Weyl’s approach to spinors 0.10. Angular Momentum Theory References Part 1: Foundations: Electromagnetism, General Relativity, and Quantum Mechanics Chapter 1. Maxwell’s Equations and Occam’s Razor 1.1. Introduction 1.2. The Electromagnetic Field and the Wave Function 1.2.1. The electromagnetic four potential 1.2.2. Maxwell’s equations 1.3. Properties of the Electromagnetic Field 1.3.1. Derivation of Maxwell’s equations from Lagrangian density 1.3.2. Energy of the electromagnetic field 1.3.3. The scalar field and the Feynman concept of unworldliness 1.3.4. Electrostatic field and vector potential 1.3.5. Electric charge, antimatter, and time direction 1.3.6. Magnetic charges and currents 1.4. Conclusions References Chapter 2. Electromagnetic and Quantum Mechanical Waves 2.1. Introduction 2.2. Maxwell’s Equation Revisited 2.3. Two Different Time Representations 2.4. The Energy and Lagrangian of the F+ and F− Fields 2.5. What is the Quantum Mechanical Wavefunction? 2.6. Spacetime Solutions of Wave Equations 2.7. From Vacuum Fluctuations to Heisenberg Uncertainty 2.8. The Electromagnetic Frequency of a Massive Particle 2.9. A New “Rotation” Axis 2.10. The Longitudinal Electromagnetic Wave Acknowledgments References Chapter 3. The Electron and Occam’s Razor 3.1. Introduction 3.2. Maxwell’s Equations in Cl3,1 3.3. Electron Zitterbewegung Model 3.3.1. Simple electron model 3.3.2. Spin and intrinsic angular momentum 3.3.3. Value of the vector potential, cyclotron resonance, and flux density field 3.3.4. Value of magnetic and electrostatic energy, magnetic flux quantization, and radius of the elementary charge 3.3.5. Electron kinematics 3.3.6. Electron and electromagnetic Lagrangian density 3.3.7. Zitterbewegung and a simple derivation of the relativistic mass 3.4. Electromagnetism, Mechanics, and Lorentz Force 3.5. Energy, Momentum, and Quanta Current 3.5.1. Zitterbewegung and Heisenberg’s uncertainty principle 3.6. Electromagnetic Composite at Compton Scale 3.7. Some Other Spinning Charge Models 3.8. Conclusions References Chapter 4. The Aharonov–Bohm Effect, Proca Fields, and Flux Quantization 4.1. Introduction 4.2. Energy, Mass, Frequency, and Information 4.3. Magnetic Flux, Phase Shift, Proca Field, and Charge Quantization 4.3.1. Aharonov–Bohm equations and Zitterbewegung model 4.3.2. Proca equation and Zitterbewegung electron model 4.3.3. An equivalence between the electromagnetic Proca and the Klein–Gordon equations 4.3.4. The electromagnetic Dirac equation 4.3.5. Proca equation, electric charge quantization, and Josephson constant 4.4. ESR, NMR, Spin, and “Intrinsic” Angular Momentum 4.5. Hypotheses on the Structure of Ultra-Dense Hydrogen 4.6. Ultra-Dense Hydrogen and Low-Energy Nuclear Reactions 4.7. Conclusions Acknowledgments References Chapter 5. Wave–Particle Duality 5.1. Introduction 5.2. Metrics and the Dirac Equation 5.2.1. Dual equations 5.2.2. Clifford algebra properties 5.2.3. Hamilton–Jacobi functions and the Dirac equation 5.2.4. Exact differentials and metrics 5.2.5. Some examples 5.2.6. Wave–particle duality and the Zitterbewegung phenomenon 5.2.7. Summary of this section 5.3. Geometric Interpretation of e− Mass and de Broglie Wavelength 5.3.1. Electromagnetic analysis of electron mass and Zitterbewegung radius 5.3.2. Relativistic analysis of electron mass and Zitterbewegung radius 5.3.3. Electromagnetic analysis of electron momentum 5.3.4. Relativistic analysis of electron momentum 5.3.5. Quantum mechanical wavelength from de Broglie principle 5.4. Lorentz Transformations of Electromagnetic Waves 5.5. Conclusions Appendix: Hamilton–Jacobi Functions and Exact Differentials Appendix: Clifford Algebra and Directional Derivatives Appendix: Clifford Algebra and Harmonic Functions References Chapter 6. Battle of Theories: Magnetic Moment and Lamb Shift Calculations 6.1. Introduction 6.2. The Electron’s Anomalous Magnetic Moment 6.3. A Possible Connection Between α, ΦM, and the Feigenbaum Constant 6.4. The Proton’s Anomalous Magnetic Moment 6.5. Electromagnetic Vacuum Fluctuations 6.6. Lamb Shift 6.7. Which Microscopic Vacuum Model is the Correct One? 6.8. The Magnetic Moment of a Bound-State Electron 6.9. Orbital Angular Momentum Entanglement 6.10. Conclusions References Chapter 7. Spinor Fields 7.1. Introduction 7.2. What is the Dirac Spinor Field? 7.3. Optical Spinor Representation of Electromagnetic Fields 7.4. One Particle — Two Fields 7.5. A Factorization of the Electron State 7.5.1. The Dirac–Hestenes and Dirac–Baylis factorization 7.5.2. A factorization with vectorial mass representation 7.6. An Electron Wave at Potential Steps 7.7. Rotor Representation of Zitterbewegung Motion 7.8. From Rotors to Spinors 7.9. Neutrino Waves and Isospin 7.10. Conclusions Chapter 8. Electron Orbitals and Space–Time Curvature 8.1. Introduction 8.2. A Method of Solving the Dirac Equation 8.2.1. A mass gauge 8.3. Covariance 8.4. Wave Equations for Geodesic 8.5. Quantum Mechanics and Hilbert Spaces 8.6. Classical Mechanics 8.7. One-Dimensional Potential Well 8.8. The Hydrogen Atom 8.9. Light Emission and Absorption 8.9.1. Quantum mechanical state transition 8.9.2. Light detection 8.9.3. Ionization of atoms by low-frequency light 8.10. Conclusion Appendix: The Schwarzschild Metric References Chapter 9. The Pauli Exclusion Principle 9.1. Introduction 9.2. Isotropic Spin Correlation 9.2.1. Rotational invariance in two dimensions 9.2.2. Rotational invariance in three dimensions 9.2.3. The physical origin of Pauli exclusion 9.3. Isotropic Coupling Principle 9.4. From Isotropic Coupling to Pauli Exclusion 9.5. From Pauli Exclusion to Fermi–Dirac Statistics 9.6. Experimental Proofs of Isotropic Electron Entanglement 9.7. Antisymmetric Versus Symmetric Spin Entanglement 9.8. Conclusions References Chapter 10. Electron Dynamics in Metals 10.1. Introduction 10.2. The Drude–Sommerfeld Model of Delocalized Electrons 10.3. Thomas–Fermi Screening 10.4. Orbitals Under Electron Screening Effect 10.5. Screening in Weakly Metallic Materials 10.6. Conclusions References Part 2: Experimental Validation and Practical Applications Chapter 11. Superconductivity 11.1. The Bose–Einstein Condensation of Weakly Bound Electrons 11.2. The London Equation 11.3. Tc optimization 11.4. Rotating Superconductors 11.5. Magnetic Flux Quantization 11.6. Conclusions Appendix: A Useful Vector Field Identity Acknowledgments References Chapter 12. Compton-Scale Electron–Proton Composite 12.1. Introduction 12.2. The Theory of Close Proximity Electron–Nucleus Composite 12.2.1. Characterization of the electron state 12.2.2. Magnetic electron–proton and electron–electron interactions 12.3. Transition to Compton-Scale Composite State 12.3.1. Cooling deuterium plasma 12.3.2. Decelerating particles 12.4. Summary of Experimental Signatures 12.5. Conclusions Acknowledgments References Chapter 13. Electron-Mediated Nuclear Fusion 13.1. Electron-Mediated Fusion Signatures 13.2. Degassing of Metal Deuterides 13.3. Electrochemically Driven Deuteron–Electron Recombination 13.4. Deuterium Diffusion Across Heterogeneous Nanolayers 13.5. Conclusions References Chapter 14. Nuclear Forces and Occam’s Razor 14.1. Introduction 14.2. What is the “Strong Nuclear Force”? 14.2.1. Maxwell’s equations and the binding energy 14.2.2. Further evidence from pions 14.2.3. More evidence from scattering experiments 14.2.4. A new proton model 14.3. What is the “Weak Nuclear Force”? 14.4. What Particles are Released During Nuclear Fission? 14.5. The Nuclear Electron Particle 14.5.1. A precise measurement of the nuclear electron mass 14.5.2. A further characterization of the nuclear electron 14.6. A New Landscape of Elementary Particles 14.7. Conclusions Acknowledgments References Chapter 15. Transmutations by Evanescent Neutrinos 15.1. Introduction 15.2. Fission-like Transmutations 15.3. A Physical Model of Fission-Like Transmutations 15.4. Are We Observing Fission or Fusion? 15.5. Conclusions Acknowledgments References Chapter 16. Do Magnetic Monopoles Exist? 16.1. Introduction 16.2. Observation of Helicoidal Particle Tracks 16.3. What are the Helicoidally Spiraling Particles? 16.4. The Muon’s Anomalous Magnetic Moment Acknowledgments References Chapter 17. Simple Experiments 17.1. Introduction 17.2. Bulk Metal Fueled Energy Production 17.3. Thin Wire Fueled Energy Production Acknowledgments References Index