ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Unified Field Theory and Occam's Razor: Simple Solutions to Deep Questions

دانلود کتاب نظریه میدان یکپارچه و تیغ اوکام: راه حل های ساده برای سوالات عمیق

Unified Field Theory and Occam's Razor: Simple Solutions to Deep Questions

مشخصات کتاب

Unified Field Theory and Occam's Razor: Simple Solutions to Deep Questions

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 1800611293, 9781800611290 
ناشر: World Scientific Publishing 
سال نشر: 2022 
تعداد صفحات: 485
[486] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 Mb 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Unified Field Theory and Occam's Razor: Simple Solutions to Deep Questions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نظریه میدان یکپارچه و تیغ اوکام: راه حل های ساده برای سوالات عمیق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نظریه میدان یکپارچه و تیغ اوکام: راه حل های ساده برای سوالات عمیق


توضیحاتی درمورد کتاب به خارجی

Unified Field Theory was an expression first used by Einstein in his attempt to unify general relativity with electromagnetism. Unified Field Theory and Occam's Razor attempts to provide real answers to foundational questions related to this unification and should be of high interest to innovative scientists. A diverse group of contributing authors approach an old problem with an open-mindedness that presents a new and fresh perspective. The following topics are discussed in detail in the hope of a fruitful dialogue with all who are interested in this subject:

  • The composition of electrons, photons, and neutrinos.
  • The relationship of quantum mechanics to general relativity.
  • The four-component Dirac spinor and the meaning of imaginary numbers in this complex-valued field.
  • The Dirac equation as a proper field equation.
  • The Pauli exclusion principle and quantum entanglement.
  • High-temperature superconductivity.


This highly original book brings together theoretical researchers and experimentalists specialized in the areas of mathematics and epistemology, theoretical and experimental physics, engineering, and technology. For years they have worked independently on topics related to the foundations and unity of physics and have had numerous overlapping ideas in terms of using Clifford algebra and spinors. Within the book, new technology applications are outlined and theoretical results are complemented by interpretations of experimental data.



فهرست مطالب

Contents
Preface
About the Authors
Mathematical Preliminaries
	0.1. Clifford Algebra Introduction
	0.2. The Geometry of Clifford Algebra
		0.2.1. Reflection and rotation of vectors
		0.2.2. Clifford reversion
	0.3. Exterior Algebra and Wedge Products
	0.4. Tensors
	0.5. Singlet State
	0.6. Group Actions
	0.7. Harmonic Functions
	0.8. Notation for Quantum Mechanics
		0.8.1. Definition of quantum states
		0.8.2. Probability and quantum states
		0.8.3. Spin
		0.8.4. Indistinguishability
		0.8.5. Spin entanglement into opposite chirality
	0.9. Spinors
		0.9.1. Introduction to spinors
		0.9.2. An alternative construction of the eigenvector equation
		0.9.3. Spacetime vectors under Cartan’s approach
		0.9.4. Weyl’s approach to spinors
	0.10. Angular Momentum Theory
	References
Part 1: Foundations: Electromagnetism, General Relativity, and Quantum Mechanics
	Chapter 1. Maxwell’s Equations and Occam’s Razor
		1.1. Introduction
		1.2. The Electromagnetic Field and the Wave Function
			1.2.1. The electromagnetic four potential
			1.2.2. Maxwell’s equations
		1.3. Properties of the Electromagnetic Field
			1.3.1. Derivation of Maxwell’s equations from Lagrangian density
			1.3.2. Energy of the electromagnetic field
			1.3.3. The scalar field and the Feynman concept of unworldliness
			1.3.4. Electrostatic field and vector potential
			1.3.5. Electric charge, antimatter, and time direction
			1.3.6. Magnetic charges and currents
		1.4. Conclusions
		References
	Chapter 2. Electromagnetic and Quantum Mechanical Waves
		2.1. Introduction
		2.2. Maxwell’s Equation Revisited
		2.3. Two Different Time Representations
		2.4. The Energy and Lagrangian of the F+ and F− Fields
		2.5. What is the Quantum Mechanical Wavefunction?
		2.6. Spacetime Solutions of Wave Equations
		2.7. From Vacuum Fluctuations to Heisenberg Uncertainty
		2.8. The Electromagnetic Frequency of a Massive Particle
		2.9. A New “Rotation” Axis
		2.10. The Longitudinal Electromagnetic Wave
		Acknowledgments
		References
	Chapter 3. The Electron and Occam’s Razor
		3.1. Introduction
		3.2. Maxwell’s Equations in Cl3,1
		3.3. Electron Zitterbewegung Model
			3.3.1. Simple electron model
			3.3.2. Spin and intrinsic angular momentum
			3.3.3. Value of the vector potential, cyclotron resonance, and flux density field
			3.3.4. Value of magnetic and electrostatic energy, magnetic flux quantization, and radius of the elementary charge
			3.3.5. Electron kinematics
			3.3.6. Electron and electromagnetic Lagrangian density
			3.3.7. Zitterbewegung and a simple derivation of the relativistic mass
		3.4. Electromagnetism, Mechanics, and Lorentz Force
		3.5. Energy, Momentum, and Quanta Current
			3.5.1. Zitterbewegung and Heisenberg’s uncertainty principle
		3.6. Electromagnetic Composite at Compton Scale
		3.7. Some Other Spinning Charge Models
		3.8. Conclusions
		References
	Chapter 4. The Aharonov–Bohm Effect, Proca Fields, and Flux Quantization
		4.1. Introduction
		4.2. Energy, Mass, Frequency, and Information
		4.3. Magnetic Flux, Phase Shift, Proca Field, and Charge Quantization
			4.3.1. Aharonov–Bohm equations and Zitterbewegung model
			4.3.2. Proca equation and Zitterbewegung electron model
			4.3.3. An equivalence between the electromagnetic Proca and the Klein–Gordon equations
			4.3.4. The electromagnetic Dirac equation
			4.3.5. Proca equation, electric charge quantization, and Josephson constant
		4.4. ESR, NMR, Spin, and “Intrinsic” Angular Momentum
		4.5. Hypotheses on the Structure of Ultra-Dense Hydrogen
		4.6. Ultra-Dense Hydrogen and Low-Energy Nuclear Reactions
		4.7. Conclusions
		Acknowledgments
		References
	Chapter 5. Wave–Particle Duality
		5.1. Introduction
		5.2. Metrics and the Dirac Equation
			5.2.1. Dual equations
			5.2.2. Clifford algebra properties
			5.2.3. Hamilton–Jacobi functions and the Dirac equation
			5.2.4. Exact differentials and metrics
			5.2.5. Some examples
			5.2.6. Wave–particle duality and the Zitterbewegung phenomenon
			5.2.7. Summary of this section
		5.3. Geometric Interpretation of e− Mass and de Broglie Wavelength
			5.3.1. Electromagnetic analysis of electron mass and Zitterbewegung radius
			5.3.2. Relativistic analysis of electron mass and Zitterbewegung radius
			5.3.3. Electromagnetic analysis of electron momentum
			5.3.4. Relativistic analysis of electron momentum
			5.3.5. Quantum mechanical wavelength from de Broglie principle
		5.4. Lorentz Transformations of Electromagnetic Waves
		5.5. Conclusions
		Appendix: Hamilton–Jacobi Functions and Exact Differentials
		Appendix: Clifford Algebra and Directional Derivatives
		Appendix: Clifford Algebra and Harmonic Functions
		References
	Chapter 6. Battle of Theories: Magnetic Moment and Lamb Shift Calculations
		6.1. Introduction
		6.2. The Electron’s Anomalous Magnetic Moment
		6.3. A Possible Connection Between α, ΦM, and the Feigenbaum Constant
		6.4. The Proton’s Anomalous Magnetic Moment
		6.5. Electromagnetic Vacuum Fluctuations
		6.6. Lamb Shift
		6.7. Which Microscopic Vacuum Model is the Correct One?
		6.8. The Magnetic Moment of a Bound-State Electron
		6.9. Orbital Angular Momentum Entanglement
		6.10. Conclusions
		References
	Chapter 7. Spinor Fields
		7.1. Introduction
		7.2. What is the Dirac Spinor Field?
		7.3. Optical Spinor Representation of Electromagnetic Fields
		7.4. One Particle — Two Fields
		7.5. A Factorization of the Electron State
			7.5.1. The Dirac–Hestenes and Dirac–Baylis factorization
			7.5.2. A factorization with vectorial mass representation
		7.6. An Electron Wave at Potential Steps
		7.7. Rotor Representation of Zitterbewegung Motion
		7.8. From Rotors to Spinors
		7.9. Neutrino Waves and Isospin
		7.10. Conclusions
	Chapter 8. Electron Orbitals and Space–Time Curvature
		8.1. Introduction
		8.2. A Method of Solving the Dirac Equation
			8.2.1. A mass gauge
		8.3. Covariance
		8.4. Wave Equations for Geodesic
		8.5. Quantum Mechanics and Hilbert Spaces
		8.6. Classical Mechanics
		8.7. One-Dimensional Potential Well
		8.8. The Hydrogen Atom
		8.9. Light Emission and Absorption
			8.9.1. Quantum mechanical state transition
			8.9.2. Light detection
			8.9.3. Ionization of atoms by low-frequency light
		8.10. Conclusion
		Appendix: The Schwarzschild Metric
		References
	Chapter 9. The Pauli Exclusion Principle
		9.1. Introduction
		9.2. Isotropic Spin Correlation
			9.2.1. Rotational invariance in two dimensions
			9.2.2. Rotational invariance in three dimensions
			9.2.3. The physical origin of Pauli exclusion
		9.3. Isotropic Coupling Principle
		9.4. From Isotropic Coupling to Pauli Exclusion
		9.5. From Pauli Exclusion to Fermi–Dirac Statistics
		9.6. Experimental Proofs of Isotropic Electron Entanglement
		9.7. Antisymmetric Versus Symmetric Spin Entanglement
		9.8. Conclusions
		References
	Chapter 10. Electron Dynamics in Metals
		10.1. Introduction
		10.2. The Drude–Sommerfeld Model of Delocalized Electrons
		10.3. Thomas–Fermi Screening
		10.4. Orbitals Under Electron Screening Effect
		10.5. Screening in Weakly Metallic Materials
		10.6. Conclusions
		References
Part 2: Experimental Validation and Practical Applications
	Chapter 11. Superconductivity
		11.1. The Bose–Einstein Condensation of Weakly Bound Electrons
		11.2. The London Equation
		11.3. Tc optimization
		11.4. Rotating Superconductors
		11.5. Magnetic Flux Quantization
		11.6. Conclusions
		Appendix: A Useful Vector Field Identity
		Acknowledgments
		References
	Chapter 12. Compton-Scale Electron–Proton Composite
		12.1. Introduction
		12.2. The Theory of Close Proximity Electron–Nucleus Composite
			12.2.1. Characterization of the electron state
			12.2.2. Magnetic electron–proton and electron–electron interactions
		12.3. Transition to Compton-Scale Composite State
			12.3.1. Cooling deuterium plasma
			12.3.2. Decelerating particles
		12.4. Summary of Experimental Signatures
		12.5. Conclusions
		Acknowledgments
		References
	Chapter 13. Electron-Mediated Nuclear Fusion
		13.1. Electron-Mediated Fusion Signatures
		13.2. Degassing of Metal Deuterides
		13.3. Electrochemically Driven Deuteron–Electron Recombination
		13.4. Deuterium Diffusion Across Heterogeneous Nanolayers
		13.5. Conclusions
		References
	Chapter 14. Nuclear Forces and Occam’s Razor
		14.1. Introduction
		14.2. What is the “Strong Nuclear Force”?
			14.2.1. Maxwell’s equations and the binding energy
			14.2.2. Further evidence from pions
			14.2.3. More evidence from scattering experiments
			14.2.4. A new proton model
		14.3. What is the “Weak Nuclear Force”?
		14.4. What Particles are Released During Nuclear Fission?
		14.5. The Nuclear Electron Particle
			14.5.1. A precise measurement of the nuclear electron mass
			14.5.2. A further characterization of the nuclear electron
		14.6. A New Landscape of Elementary Particles
		14.7. Conclusions
		Acknowledgments
		References
	Chapter 15. Transmutations by Evanescent Neutrinos
		15.1. Introduction
		15.2. Fission-like Transmutations
		15.3. A Physical Model of Fission-Like Transmutations
		15.4. Are We Observing Fission or Fusion?
		15.5. Conclusions
		Acknowledgments
		References
	Chapter 16. Do Magnetic Monopoles Exist?
		16.1. Introduction
		16.2. Observation of Helicoidal Particle Tracks
		16.3. What are the Helicoidally Spiraling Particles?
		16.4. The Muon’s Anomalous Magnetic Moment
		Acknowledgments
		References
	Chapter 17. Simple Experiments
		17.1. Introduction
		17.2. Bulk Metal Fueled Energy Production
		17.3. Thin Wire Fueled Energy Production
		Acknowledgments
		References
Index




نظرات کاربران