دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Pranab Sarkar. Sankar Prasad Bhattacharyya
سری:
ISBN (شابک) : 0367030349, 9780367030346
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 433
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Understanding Properties of Atoms, Molecules and Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آشنایی با خواص اتم ها، مولکول ها و مواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در یک تمدن مبتنی بر فناوری، جستجو برای مواد جدید و هوشمندتر همیشگی است. آنها به عنوان پلتفرم هایی برای توسعه فناوری های جدید یا برای بهبود فناوری موجود مورد نیاز هستند. کشف یک ماده جدید دیگر تصادفی یا تصادفی نیست، بلکه مبتنی بر استدلال دقیق است که با درک عمیق اجزای ریز مواد - اتمها و مولکولها به صورت مجزا یا در یک مجموعه - ساختار یافته است. این مستلزم قرار گرفتن در معرض مکانیک کوانتومی و آماری است. «درک خواص اتمها، مولکولها و مواد» تلاشی (شاید اولین بار) برای آوردن تمام مواد لازم نظری و اطلاعات فیزیکی مرتبط در یک جلد است. این کتاب خوانندگان (فارغ التحصیلان سال اول) یا محققین شیمی/مهندسی مواد را با مکانیک کوانتومی ابتدایی اتم ها، مولکول ها و جامدات آشنا می کند و سپس آنها را با روش های مکانیک آماری (کلاسیک و همچنین کوانتومی) همراه با مقدماتی آشنا می کند. اصول شبیه سازی کلاسیک MD مفاهیم اساسی با وضوح معرفی شده و با نمونه هایی آسان برای درک نشان داده شده است، بنابراین خوانندگان را برای کاوش در دنیای مواد - عجیب و غریب و دنیوی آماده می کند. تأکید بر پدیده ها و آنچه در سطح بنیادی آنها را شکل می دهد، بوده است. شرح جامع اصول طراحی مدرن برای مواد همراه با مثال از ویژگی های منحصر به فرد کتاب است.
از نکات برجسته کتاب، معرفی و تحلیل جامع
حجم برای ایجاد علاقه به علم مواد و انقلاب خاموش که اهداف و مرزهای علم مواد را به طور مداوم بازتعریف می کند، طراحی و سازماندهی شده است.
In a technology driven civilization the quest for new and smarter materials is everlasting. They are required as platforms for developing new technologies or for improving an already existing technology. The discovery of a new material is no longer chance driven or accidental, but is based on careful reasoning structured by deep understanding of the microconstituents of materials - the atoms and molecules in isolation or in an assembly. That requires fair amount of exposure to quantum and statistical mechanics. `Understanding Properties of Atoms, Molecules and Materials' is an effort (perhaps the first ever) to bring all the necessary theoretical ingredients and relevant physical information in a single volume. The book introduces the readers (first year graduates) or researchers in material chemistry/engineering to elementary quantum mechanics of atoms, molecules and solids and then goes on to make them acquainted with methods of statistical mechanics (classical as well as quantum) along with elementary principles of classical MD simulation. The basic concepts are introduced with clarity and illustrated with easy to grasp examples, thus preparing the readers for an exploration through the world of materials - the exotic and the mundane. The emphasis has been on the phenomena and what shapes them at the fundamental level. A comprehensive description of modern designing principles for materials with examples is a unique feature of the book.
The highlights of the book are comprehensive introduction and analysis of
The volume is designed and organized to create interest in the science of materials and the silent revolution that is redefining the goals and boundaries of materials science continuously.
Cover Page Half Title Title Page Contents Preface Authors 1 The Science of Materials 1.1 Introduction: The Age of Materials 1.2 Atoms, Molecules and Solids 1.2.1 More on Unit Cells 1.3 From Atoms and Molecules to Materials 1.4 The Need for Theoretical Understanding 1.5 Topics Covered 1.5.1 The Mechanics of the Microworld 1.5.2 Quantum Mechanics of Atoms 1.5.3 Quantum Mechanics of Molecules 1.5.4 Quantum States in Solids 1.5.5 Classical Statistical Mechanics 1.5.6 Quantum Statistical Mechanics 1.5.7 Traditional Materials 1.5.8 Smart Materials 1.5.9 Magnetic Materials 1.5.10 Low-Dimensional Materials 1.5.11 NLO and Energy Materials 1.5.12 Materials Design 1.6 Classification of Materials 1.7 Future Outlook References 2 Quantum Mechanics 2.1 Introduction: Mechanics of the Microworld 2.2 Law of Quantum Evolution: The Schrödinger Equation 2.2.1 Axiomatic Foundation of Quantum Mechanics 2.2.2 Postulates of Quantum Mechanics 2.3 Observables, Operators and Their Eigenfunctions 2.3.1 More About Hermiticity and Hermitian Conjugates 2.4 Commuting and Non-Commuting Observables 2.5 Stationary States of Quantum Systems 2.5.1 The Free Particle 2.5.2 Stationary States of a Simple Harmonic Oscillator 2.6 The Tunnel Effect 2.6.1 Tunneling Across a Rectangular Potential Barrier 2.7 Heisenberg’s Formulation of Quantum Mechanics 2.7.1 Matrix Representations for x and px 2.7.2 Zero Point Oscillation 2.7.3 Harmonic Oscillator in Three Dimensions 2.7.4 Quantum States in Infinitely Deep Potential Wells 2.8 Representations in Quantum Mechanics 2.8.1 Coordinate Representation 2.8.2 Momentum Representation 2.8.3 Matrix Representation 2.8.4 Vector Space Formulation References 3 Quantum Mechanics of Atoms 3.1 Introduction 3.2 The Periodic Table of Elements 3.3 The Quantum States of the Hydrogenic Atoms: Symmetry 3.4 Rotational Symmetry, Angular Momentum, Eigenstates and Parity 3.5 Orbital Angular Momentum of Electron 3.5.1 Spherical Harmonics and Eigenstates of Rigid Rotator 3.5.2 Radial Motion of the Electron in H-Atom 3.5.3 Asymptotic Forms of R(r) and Continuous Energy Spectrum 3.5.4 Discrete Spectrum of Energy 3.5.5 Energy Degeneracy: Discrete Spectrum 3.5.6 Complete Wavefunction of a Hydrogen Atom 3.6 Spin Angular Momentum 3.7 Total Angular Momentum (J): General Addition of Angular Momentum 3.8 Many Electron Atoms: Aufbau Principle 3.8.1 Periods and Shells 3.8.2 Groups and Outer Shells 3.8.3 A Case Study of Two-Electrons Atoms: He 3.8.4 Designating Electronic States of a He Atom 3.8.5 Constructing Wavefunctions for the Two-Electron States of the He Atom 3.8.6 Calculating Energy of He Atom in the Ground State: Variational Approximation 3.9 More on Variational Methods References 4 Molecular Quantum Mechanics 4.1 Introduction: Molecules as Building Blocks 4.2 The Quantum States of Hydrogen Molecule Ion (H+ 2 ) 4.3 The Quantum States of Hydrogen Molecule 4.4 Quantum Mechanics of Covalent Bond 4.4.1 Energetics of Covalent Bond in H2 4.4.2 Electron Probability Density Distribution in Heitler-London States 4.4.3 Valency and Quantum Mechanics 4.5 Dynamics of Electron Exchange in Covalent Bond Formation 4.6 Forces in Molecules, Bonding and Equilibrium Structures 4.7 Bonding and Anti-bonding Region in a Molecule, Berlin Diagrams 4.8 Ionic Bonds and Ionic Solids 4.8.1 Cohesive Energy of Ionic Solids 4.9 Weak-Binding 4.10 Weak-Binding: Hydrogen Bonds 4.11 Directed Valence and Chemical Binding 4.12 Many Electron Systems 4.13 Hartree Method 4.13.1 Slater Condon Rules 4.14 Hartree-Fock Method 4.15 LCAO-MO-SCF-CI Calculations 4.16 Perturbative Correction to HF Wavefunction and Energy 4.17 The Rise of Density Functional Theory 4.17.1 The Kohn-Sham Method 4.18 The Basis Sets for Molecular Calculation References 5 Quantum States of Solids 5.1 Introduction 5.2 One-Electron Approximation, Translational Symmetry, Bloch States and Brillouin Zone 5.3 Formation of Energy Bands 5.3.1 Nearly Free Electron Model of Band Structure 5.3.2 Kronig-Penny Problem and Structure of Energy Bands 5.3.3 The Tight Binding Model of Periodic Solids 5.4 The Idea of Band Gap and Electrical Transport in Solids 5.4.1 Electrical Conductors: Partially Filled Valence Band 5.4.2 Insulators: Completely Filled Valence Band 5.4.3 Semiconductors 5.4.4 Effective Mass (m*) 5.4.5 Lattice Vibrations, Phonons and Electrical Conductivity 5.5 Symmetry and Splitting of Bands 5.6 Amorphous Solids and Localized Electronic States 5.6.1 Localization in Disordered Solids References 6 Classical Statistical Mechanics 6.1 Introduction 6.2 Types of Probability Distributions 6.2.1 Probability and Unexpectedness: The Entropy 6.3 The Equilibrium State and Distribution Functions 6.3.1 Maxwell’s Distribution 6.3.2 The Equilibrium State and Boltzmann Distribution 6.3.3 Maxwell-Boltzmann Distribution 6.4 Gibbs Distribution 6.4.1 Maxwell-Boltzmann Probability Density 6.4.2 The Gibbs Distribution: Probability of an Equilibrium State 6.5 Classical Statistical Mechanics 6.6 Classical Statistical Mechanics and Macroscopic Properties 6.6.1 Gibbs-Helmholtz Equation from Classical Statistical Mechanics: Internal Energy (U) 6.6.2 Entropy: Statistical Mechanical and Thermodynamic Interpretation 6.7 Statistical Mechanics and Numerical Simulation 6.7.1 MD Simulations (Basic Idea) 6.7.2 Calculation of Thermodynamic Properties 6.7.3 Microcanonical Ensemble Molecular Dynamics 6.7.4 Monte-Carlo Simulations 6.7.5 Transition Probabilities and Metropolis Method References 7 Quantum Statistical Mechanics 7.1 Introduction 7.2 The Canonical Gibbs Distribution in Quantum Statistics 7.2.1 Canonical Gibbs’ Distribution For Discrete States 7.2.2 Quantum Gibbs’ Distribution and Entropy 7.3 Entropy and the Entropy Maximal State 7.4 The Grand Canonical Potential 7.4.1 Thermodynamic Meaning of *, µ and T 7.5 Quantum Statistics of Bosons and Fermions 7.5.1 Bose-Einstein Distribution 7.5.2 Fermi-Dirac Distribution 7.5.3 Boson Statistics and Indistinguishability Principle 7.6 Applications of Bose Statistics to Ideal Photon and Phonon Gas 7.6.1 Photon Gas (Ideal) 7.6.2 Phonon Gas (Ideal) 7.7 Quantum Statistics for Electron Gas in a Potential Well 7.7.1 Non-Degenerate Electron Gas 7.7.2 Degenerate Electron Gas 7.8 Quantum Effects in Heat Capacity of Gases 7.8.1 AModel Application of Quantum Statistics 7.9 Bose-Einstein Condensation References 8 Traditional Materials 8.1 Introduction: Atom-Based Materials 8.2 Conducting, Superconducting and Insulating Materials 8.3 Metallic Conductivity: A Rudimentary Theory 8.4 Quantum Theory of Metallic Conductivity, Electron Phonon Interactions 8.5 Superconductivity and Superconducting State 8.5.1 The Nature of the Superconducting State 8.5.2 Binding Energy of a Cooper-Pair 8.5.3 Superconducting State Function 8.5.4 Special Features of the Superconducting State 8.6 Semiconducting Materials and Insulators 8.6.1 Equilibrium Statistics of Electrons in Semiconductors and Metal 8.6.2 Equilibrium Statistics of Electron Gas in Semiconductors 8.6.3 Semimetals 8.6.4 Compound Semiconductors 8.7 Insulators 8.7.1 Ferroelectric Materials 8.8 High Temperature or Type II Superconductors 8.8.1 Ceramics and Their Structures 8.8.2 High Tc Superconducting Materials 8.8.3 Understanding High Tc Superconductivity 8.9 Metal Alloys 8.9.1 Ferrous Alloys 8.9.2 Steels 8.9.3 Non-Ferrous Alloys 8.9.4 Special Materials References 9 The Advent of Smart Materials 9.1 Introduction 9.2 Electrochromic (EC) Materials 9.3 Piezoelectric Materials 9.4 Shape Memory Materials (SMM) 9.5 Photochromic Materials (PM) 9.6 Quantum Tunneling Composites (QTC) 9.7 Quantum Materials (QMs) 9.8 Organic Superconductors References 10 Magnetic Materials 10.1 Introduction: Magnetic Materials 10.2 Important Magnetic Vectors 10.3 Types of Magnetism and Magnetic Materials 10.4 Types of Magnetism: Theoretical 10.5 Exchange Interaction, Heisenberg’s Exchange Hamiltonian and Magnetic Hamiltonian 10.5.1 Diamagnetic Materials 10.5.2 Paramagnetic Material 10.5.3 Ferromagnetic, Antiferromagnetic and Ferrimagnetic Materials 10.5.3.1 Ferromagnetic Ordering 10.5.3.2 Antiferromagnetic Ordering 10.5.3.3 Ferrimagnetic Ordering 10.5.4 Superparamagnetism 10.6 Paramagnetic Susceptibility of Gases and Conduction Electrons of Metals 10.6.1 Quantum Model for Paramagnetic Susceptibility 10.6.2 Paramagnetism of a Free-Electron Gas 10.6.3 Paramagnetism of Conduction Electrons 10.6.4 Paramagnetic Resonance 10.7 Diamagnetism of Atoms and Conduction Electrons 10.8 Ferromagnetic Susceptibility 10.9 Giant Magneto Resistance (GMR) 10.10 Materials with Ferromagnetic plus Ferroelectric Order 10.11 Molecular Magnets 10.12 Soft Magnetic Materials References 11 Low-Dimensional Materials 11.1 Introduction: The New Age Materials 11.2 Graphene 11.2.1 Geometry and Crystal Structure 11.2.2 Electronic Structure of Graphene 11.3 Graphene Nanoribbons 11.3.1 Electronic Structure of aGNRs 11.3.2 Electronic Structure of zGNRs 11.3.3 Transport Properties of GNRs 11.4 Carbon Nanotubes (CNTs) 11.4.1 Geometric Features of CNTs 11.4.2 Electronic Structure of CNTs 11.4.3 Effect of Curvature on Electronic Structure of CNTs 11.5 Graphene Quantum Dots (GQDs) 11.5.1 Electronic Structure of GQDs 11.6 New 2D Carbon Allotropes: Defected Graphenes and Pentagraphene 11.7 White Graphene 11.7.1 Geometry and Crystal Structure 11.7.2 Electronic Structure of h-BN 11.7.3 General Properties and Applications of h-BN 11.8 Boron Nitride Nanoribbons (BNNRs) 11.9 Boron Nitride Nanotubes (BNNTs) 11.9.1 Morphology and Crystal Structure of BNNTs 11.9.2 Electronic Structure of BNNTs 11.9.3 General Properties and Applications of BNNTs 11.10 Phosphorene 11.10.1 Geometry and Crystal Structure 11.10.2 Mechanical Properties 11.10.3 Electronic Structure and General Properties of Phosphorene 11.11 Transition Metal Dichalcogenides (TMDs) 11.11.1 Geometry and Crystal Structure of TMDs 11.11.2 Mechanical Properties 11.11.3 Electronic Structure of TMDs 11.11.4 Optical Properties of TMDs 11.12 Pristine and TM-doped PtSe2 Monolayers 11.13 Other Nanomaterials: Special Emphasis on Nanoclusters or Quantum Dots (QDs) 11.13.1 Classification of Nanoclusters 11.13.2 Reactivity of Nanoclusters 11.14 Nanocomposites or Nanohybrid Materials 11.15 Nanomaterials for Energy Conversion Processes References 12 Energy Materials 12.1 Introduction 12.2 The Looming Energy Crisis 12.3 Materials for Hydrogen Storage 12.3.1 Microporous Materials for H2 -Storage 12.3.2 Carbon-Based Solid State Materials for Hydrogen Storage 12.3.3 Zeolites 12.3.4 Metal Organic Frameworks (MOFs) 12.3.5 Organic Polymers for Hydrogen Storage 12.3.6 Interstitial Hydrides 12.3.7 Intermetallic Compounds 12.3.7.1 AB5 Intermetallics 12.3.7.2 AB2 Intermetallics 12.3.7.3 AB – Intermetallics 12.3.8 Modified Binary Hydrides 12.3.9 Quasi-crystalline Materials 12.3.10 Complex Hydrides 12.4 Optical Properties of Materials and Lasers 12.4.1 Optical Properties ofMetals and Nonmetals 12.4.1.1 Metals 12.4.1.2 Non-metals 12.5 Photonic Materials 12.6 Photovoltaic Materials 12.6.1 Generation I Materials 12.6.2 Generation II Materials 12.6.3 Generation III Materials 12.7 Materials that Change Light 12.8 Non-Linear Optical Response of Materials 12.9 Thermoelectric Materials References 13 Designer Materials 13.1 Introduction: Design by Thumb Rules 13.2 Materials by Design: Beyond Thumb Rules 13.3 Designing Materials: Beyond Thumb Rules 13.4 The Advent Computational Material Science 13.4.1 Designing Hard and Superhard Materials 13.4.2 Adaptive Design in Materials Discovery 13.4.3 Accelerated Discovery of New Magnetic Materials 13.4.4 Materials Informatics in the Search for Novel Materials 13.4.4.1 Stannates 13.4.4.2 Ruthenates 13.4.5 Computational Design of New MOF-Based Material for Hydrogen Storage 13.4.6 Miscellaneous Materials Designing Approach References 14 Current Status and Outlook for Future 14.1 Introduction 14.2 Where Do We Stand? 14.3 Future Outlook References Index