دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: L. Britt Wilson, Richard A. Hoppmann, Floyd E. Bell, Victor V. Rao سری: Physiology in Health and Disease ISBN (شابک) : 1071618628, 9781071618622 ناشر: Springer سال نشر: 2023 تعداد صفحات: 323 [324] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب Understanding Physiology with Ultrasound به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب درک فیزیولوژی با سونوگرافی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب برای هر کسی که می خواهد از سونوگرافی برای درک فیزیولوژی انسان در محیط بالینی و کلاس درس استفاده کند، جالب خواهد بود. پیشرفتهای فوقالعاده در فناوری اولتراسوند منجر به سیستمهای سونوگرافی قابل حملی شده است که استفاده آسان، تولید تصاویر عالی و مقرون به صرفه بودن با سیستمهای دستی و اندازه لپتاپ با کیفیتی بین 2 تا 20 هزار دلار است. این سیستمها اکنون در کنار بالین بیمار یا محل مراقبت تقریباً توسط تمام تخصصهای پزشکی و جراحی از مراقبتهای اولیه گرفته تا جراحی ارتوپدی استفاده میشوند. این سیستمهای قابل حمل، بهویژه دستگاههای دستی، اکنون گوشیهای پزشکی قرن بیست و یکم نامیده میشوند و احتمالاً توسط بسیاری از افرادی که در حال حاضر از گوشیهای پزشکی استفاده میکنند، از جمله پزشکان، پرستاران، دستیاران پزشک، پزشکان و سایر متخصصان سلامت استفاده خواهند شد.
استفاده از سونوگرافی در آموزش دانشجویان پزشکی در دهه
1990 آغاز شد و به طور پیوسته به یک ابزار آموزشی رایج برای
دروسی مانند آناتومی و فیزیولوژی تبدیل شد. این یک ابزار
یادگیری بصری و بسیار تعاملی است که علوم پایه و بالینی را پل
می کند و به زبان آموز اجازه می دهد تا اصول فیزیولوژی را در یک
مدل زنده رعایت کند. سونوگرافی همچنین برای آموزش سایر
دانشآموزان حرفههای بهداشتی و همچنین دانشآموزان مقطع
کارشناسی و دانشآموزان دبیرستان استفاده میشود. با وجود این
علاقه، هیچ کتابی در دسترس نیست که مقدمهای بر سونوگرافی و
نحوه استفاده از آن برای افزایش آموزش فیزیولوژی ارائه دهد. این
کتاب الکترونیکی دقیقاً این کار را انجام میدهد و همچنین
ویدیوهای «چگونه اسکن کنیم» را با تمرینهای آزمایشگاهی نمونه
ارائه میکند تا فراگیران را بیشتر درگیر کند.
This book will be of interest to anyone who wants to use ultrasound to understand human physiology both in the clinical setting and the classroom. Tremendous advances in ultrasound technology have resulted in portable ultrasound systems that are easy to use, produce excellent images, and are affordable with quality hand-held and laptop-sized systems costing between $2K and $20K. These systems are now being used at the patient bedside or point of care by almost all medical and surgical specialities from primary care to orthopaedic surgery. These portable systems, especially the hand-held devices, are now being called the stethoscopes of the 21st century and will likely be used by many that are presently using stethoscopes including physicians, nurses, physician assistants, medics and other health professionals.
Ultrasound began to be used in medical student
education in the 1990s and is steadily becoming a common
teaching tool for courses like anatomy and physiology. It is
a visual, highly interactive learning tool that bridges the
basic and clinical sciences and allows the learner to observe
physiology principles in a living model. Ultrasound is also
being used to teach other health professions students as well
as undergraduate college students and high school students.
Despite this interest there are no books available that
provide an introduction to ultrasound and how it can be used
to enhance the teaching of physiology. This e-book will do
just that as well as offer “How to Scan” videos with example
laboratory exercises to further engage learners.
Contents Chapter 1: Using Ultrasound to Teach Physiology: An Introduction 1.1 Ultrasound Technology, Point-of-Care Ultrasound, and Ultrasound in Education 1.2 Advantages of Using Ultrasound to Teach Physiology 1.2.1 Safety and Ease of Learning Ultrasound to Visualize Anatomy and Assess Physiology/Function 1.2.2 Ultrasound Use in Multiple Teaching Formats 1.2.3 Competency-Based Medical Education (CBME) 1.2.4 Integration Across Life Sciences and Medical Curricula 1.2.5 A Learning Tool That Becomes a Clinical Practice Tool Further Reading Chapter 2: The Basics of Ultrasound Physics 2.1 What Is Ultrasound? 2.2 How Does Ultrasound Work? 2.3 Interactions of Sound Waves in the Body 2.3.1 Reflection 2.3.2 Scatter 2.3.3 Refraction 2.3.4 Absorption 2.3.5 Attenuation 2.3.6 Interactions Summary 2.4 Propagation Speed of Ultrasound Waves 2.5 What Determines Returning Echo Signal Strength? 2.6 What Characteristics of Echoes Contribute to Image Display? 2.6.1 Echo Signal Amplitude 2.6.2 Position of Returning Echo on Probe Footprint 2.6.3 Time for Echo Return 2.6.4 Frequency Shifts 2.7 Modes of Ultrasound 2.7.1 Brightness Mode (B-Mode) 2.7.2 Motion Mode (M-Mode) 2.7.3 Color Doppler 2.7.4 Spectral Doppler 2.7.5 Power Doppler 2.8 Ultrasound Machine Considerations 2.8.1 Probe Frequency 2.8.1.1 High Frequency 2.8.1.2 Low Frequency 2.8.2 Shape/Design of Probe 2.8.2.1 Sector 2.8.2.2 Curvilinear 2.8.2.3 Linear 2.8.3 Display Parameters for Optimizing Images 2.8.3.1 Depth 2.8.3.2 Gain 2.8.3.3 TGC 2.8.3.4 Focus 2.8.3.5 Frequency 2.8.3.6 Presets 2.8.4 Other Machine Features 2.8.4.1 Freeze 2.8.4.2 Measure 2.8.4.3 Save 2.9 Patient Considerations 2.9.1 Patient Preparation 2.9.2 Position 2.9.3 Maneuvers and Manipulations 2.10 Scanner Considerations 2.10.1 Probe Placement 2.10.2 Probe Manipulation 2.10.2.1 Rocking 2.10.2.2 Fanning 2.10.2.3 Rotation 2.10.2.4 Compression 2.10.2.5 Sliding or Sweeping 2.11 Scan Planes 2.11.1 Long Axis 2.11.2 Short Axis 2.11.3 Scan Plane vs Body Plane 2.12 Image Display Orientation 2.13 Image Description Terminology 2.14 Artifacts 2.14.1 Shadowing 2.14.2 Enhancement 2.14.3 Mirror Image 2.14.4 Reverberation 2.14.5 Ring Down 2.14.6 Comet Tail 2.14.7 Anisotropy 2.14.8 Loss of Contact 2.14.9 Edge Artifact 2.14.10 Aliasing 2.15 Safety Considerations 2.15.1 Output Power 2.15.2 Mechanical Index 2.15.3 Thermal Index 2.15.4 ALARA Further Reading Chapter 3: Ultrasound of the Vascular System 3.1 Anatomy and Physiology of the Vascular System 3.2 Hemodynamics 3.2.1 Pressure/Flow/Resistance 3.2.2 Velocity 3.2.3 Turbulence 3.2.4 Extravascular Pressure 3.3 Vascular Ultrasound: Settings 3.3.1 Preset 3.3.2 Color Doppler 3.3.3 Spectral Doppler 3.3.4 Doppler Equation 3.4 US Laboratory Exercises 3.4.1 Exercise 1: Common Carotid Artery (CCA) and Internal Jugular Vein (IJV) 3.4.1.1 Learning Objectives 3.4.1.2 Transducer/Probe 3.4.1.3 Additional Equipment and Supplies 3.4.1.4 Patient Position and Image Orientation 3.4.1.5 Performing the Scan 3.4.2 Exercise 2: Quantitating Velocity in the Common Carotid Artery 3.4.2.1 Learning Objectives 3.4.2.2 Transducer/Probe 3.4.2.3 Additional Equipment and Supplies 3.4.2.4 Patient Position and Image Orientation 3.4.2.5 Performing the Scan Further Reading Chapter 4: Ultrasound of the Heart 4.1 Anatomy and Physiology of the Heart 4.2 Cardiac Muscle Contraction 4.3 Ultrasound Anatomy 4.4 Common Applications of Cardiac Ultrasound 4.5 The Electrical Activity of the Heart 4.6 Heart Sounds 4.7 The Cardiac Cycle 4.7.1 Phase 1: Atrial Systole (Fig. 4.16) 4.7.2 Phase 2: Ventricular Isovolumetric Contraction (Fig. 4.17) 4.7.3 Phase 3: Ventricular Rapid Ejection of Blood (Fig. 4.18) 4.7.4 Phase 4:Ventricular Reduced Ejection (Fig. 4.19) 4.7.5 Phase 5: Ventricular Relaxation Isovolumetric (Fig. 4.20) 4.7.6 Phase 6: Ventricular Rapid Filling (Fig. 4.21) 4.7.7 Phase 7: Ventricular Reduced Filling (Diastasis) (Fig. 4.22) 4.8 The Ventricular Pressure-Volume Relationships and the Cardiac Loop 4.9 Cardiac Output 4.10 Determinants of Stroke Volume 4.10.1 Preload 4.10.2 Afterload 4.10.3 Contractility 4.11 Ejection Fraction 4.12 Hypertension, Cardiac Remodeling, and Heart Failure 4.13 Diastolic Dysfunction 4.14 Ultrasound Laboratory Exercises 4.14.1 Exercise 1: The Parasternal Long Axis (PLAX) View of the Heart 4.14.1.1 Learning Objectives 4.14.1.2 Transducer/Probe 4.14.1.3 Additional Equipment and Supplies 4.14.1.4 Patient Position and Image Orientation 4.14.1.5 Performing the Parasternal Long Axis View 4.14.2 Exercise 2: Combining Ultrasound with Auscultation of the Heart 4.14.2.1 Learning Objectives 4.14.2.2 Transducer/Probe 4.14.2.3 Additional Equipment and Supplies 4.14.2.4 Auscultation of the Heart 4.14.2.5 Ultrasound and Auscultation of the Heart 4.14.3 Exercise 3: The Apical Four and Five Chamber Views of the Heart 4.14.3.1 Learning Objectives 4.14.3.2 Transducer/Probe 4.14.3.3 Additional Equipment and Supplies 4.14.3.4 Patient Position and Image Orientation 4.14.3.5 Performing the Apical Four Chamber View 4.14.4 Exercise 4: Color Doppler Ultrasound to Assess Cardiac Blood Flow and Heart Valves 4.14.4.1 Learning Objectives 4.14.4.2 Transducer/Probe 4.14.4.3 Additional Equipment and Supplies 4.14.4.4 Applying Color Doppler to Apical Cardiac Views Further Reading Chapter 5: Ultrasound of the Respiratory System 5.1 Anatomy and Physiology of the Respiratory System 5.2 How We Breathe 5.2.1 Alterations in Intrapleural Pressure due to Pathologic States: Appearance on Ultrasound 5.2.2 Inspiration 5.2.3 Expiration 5.3 Diaphragmatic Excursion: Appearance on Ultrasound 5.4 Other Respiratory Muscles 5.5 Compliance and Elasticity 5.6 Gas Exchange and Hypoxemia 5.6.1 Lab Excercise: Assessment of Lung Sliding and Pneumothorax Simulation 5.6.1.1 Learning Objectives 5.6.1.2 Transducer/Probe 5.6.1.3 Patient Position and Image Orientation 5.6.1.4 Evaluating the Pleural Surface and Lung Sliding References Further Reading Chapter 6: Ultrasound of the Gastrointestinal Tract 6.1 Anatomy and Physiology of the Gastrointestinal Tract 6.2 Motility 6.3 Absorption 6.4 Excretion 6.5 Immunity 6.6 Regulation of the Gastrointestinal Tract 6.7 Layers of the Gastrointestinal Wall 6.8 Unique Ultrasound Features of the GI Tract 6.8.1 Depth 6.8.2 Intestinal Air 6.8.3 Peristalsis 6.8.4 Fed or Fasting 6.9 Gastrointestinal Tract 6.9.1 Oral Cavity 6.9.2 Larynx/Pharynx 6.9.3 Esophagus 6.9.4 Stomach 6.9.5 Small Intestine 6.9.6 Large Intestine 6.9.7 Liver 6.9.7.1 Overview 6.9.7.2 Hepatic Circulation 6.9.7.3 Liver Structure 6.9.7.4 Functions of the Liver 6.9.7.5 Liver Fibrosis and Cirrhosis 6.9.7.6 Albumin 6.9.8 Gallbladder and Bile 6.9.8.1 Gallbladder 6.9.8.2 Common Bile Duct 6.9.8.3 Gallbladder Contraction 6.9.8.4 Bile 6.9.9 Pancreas 6.10 Table of US Applications 6.11 Lab Exercises 6.11.1 Exercise 1: Esophagus Swallow-Examining Peristalsis 6.11.1.1 Learning Objectives 6.11.1.2 Transducer/Probe 6.11.1.3 Needed Supplies 6.11.1.4 Patient Position and Image Orientation 6.11.1.5 Performing the Scan 6.11.1.6 A Step Further 6.11.2 Exercise 2: Observing Changes in the Fasting and Post Prandial Gallbladder 6.11.2.1 Learning Objectives 6.11.2.2 Transducer/Probe 6.11.2.3 Needed Supplies 6.11.2.4 Patient Position and Image Orientation 6.11.2.5 Performing the Scan on a Fasting Gallbladder 6.11.2.6 Performing the Scan on a Post-Prandial Gallbladder 6.11.2.7 One Step Further 6.12 Conclusion Further Reading Reference Books Articles: General Ultrasound of the Gastrointestinal Ttract Chapter 7: Ultrasound of the Urinary System 7.1 Anatomy and Physiology of the Urinary System 7.1.1 Renal Structures on Ultrasound 7.1.2 Bladder on Ultrasound 7.1.3 Renal Vasculature on Ultrasound 7.2 Clinical Topic 1 7.2.1 Urinary Obstruction 7.2.1.1 Hydronephrosis 7.2.1.2 Bladder Assessment 7.3 Clinical Topic 2 7.3.1 Renal Injury 7.3.1.1 Acute Kidney Injury 7.3.1.2 Chronic Kidney Disease 7.3.2 Ultrasound Assessment in Renal Injury 7.3.2.1 Cortical Echogenicity 7.3.2.2 Kidney Size 7.3.2.3 Volume Assessment 7.3.3 Laboratory Exercises 7.3.3.1 Exercise #1: Focused Kidney & Bladder Assessment Learning Objectives Transducer/Probe Additional Equipment and Supplies Patient Position and Image Orientation Performing the Scan 7.3.3.2 Exercise #2: Inferior Vena Cava (IVC) Assessment Learning Objectives Transducer/Probe Additional Equipment and Supplies Patient Position and Image Orientation Performing the Scan References Chapter 8: Ultrasound of the Musculoskeletal System 8.1 Anatomy and Physiology of the Musculoskeletal System 8.1.1 Skeleton 8.1.2 Skeletal Muscle 8.2 US Imaging of the MSK 8.2.1 Echotexture of the Tissues in the MSK System 8.2.1.1 Skeletal Muscle 8.2.1.2 Tendons and Ligaments 8.2.1.3 Bone and Cartilage 8.2.1.4 Joints, Joint Capsules, and Bursae 8.2.2 Dynamic Imaging 8.2.3 Examples of Clinical Applications of MSK Ultrasound Imaging 8.2.4 Laboratory Exercises That Demonstrate Concepts of Physiology of the MSK System 8.2.4.1 Exercise 1: Ultrasound Imaging of Muscle Architecture During Contraction Protocol 8.2.4.2 Exercise 2: Use Power Doppler to Observe Differences in Blood Perfusion of Muscle at Rest and After Exercise Protocol 8.2.4.3 Exercise 3: Use Ultrasound Imaging to Explore Venous Return in the Popliteal Vein Protocol 8.2.4.4 Exercise 4: Use Spectral Doppler to Demonstrate the Change from a High Resistance Waveform to a Low Resistance Wavefor... Protocol 8.3 Summary References Chapter 9: Ultrasound of the Endocrine System 9.1 Anatomy and Physiology of Endocrine System 9.2 Hormone Synthesis 9.3 Mechanisms of Hormone Action 9.4 The Hypothalamus: The single Most Important Orchestrator of Hormones in the Body 9.5 Hormone Receptor Regulation 9.6 The Thyroid: A Model for Using of Ultrasound to Probe Hormonal Physiology 9.7 Scanning the Thyroid Gland 9.8 Diseases of the Thyroid Gland 9.9 Hyperthyroidism 9.10 Hypothyroidism 9.11 Goiter 9.11.1 Exercise 1: Midline Transverse View of the Thyroid Gland and the Surrounding Structures 9.11.1.1 Learning Objectives 9.11.1.2 Type of Transducer/Probe 9.11.1.3 Patient Position and Image Orientation 9.11.1.4 Performing the Transverse View of the Thyroid Gland 9.11.2 Exercise 2: Using Ultrasound to Observe and Obtain Thyroid Volume 9.11.2.1 Learning Objectives 9.11.2.2 Type of Transducer/Probe 9.11.2.3 Patient Position and Image Orientation 9.11.2.4 Calculating Thyroid Volume Further Reading Chapter 10: Ultrasound of the Reproductive System 10.1 Anatomy and Physiology of Reproductive System 10.1.1 Male Reproduction 10.1.2 Some Common Clinical Ultrasound Applications for Male Reproductive Physiology 10.2 Female Reproduction 10.2.1 Some Common Clinical Ultrasound Applications for Female Reproductive Physiology 10.3 Laboratory Exercises in Reproductive Physiology 10.3.1 Exercise 1: Observing the Male Pelvis with the Abdominal Approach 10.3.1.1 Learning Objectives 10.3.1.2 Transducer/Probe 10.3.1.3 Additional Equipment and Supplies 10.3.1.4 Patient Position and Image Orientation 10.3.1.5 Performing the Male Abdominal Pelvic Ultrasound 10.3.2 Exercise 2: Observing the Female Pelvis with the Abdominal Approach 10.3.2.1 Learning Objectives 10.3.2.2 Transducer/Probe 10.3.2.3 Additional Equipment and Supplies 10.3.2.4 Patient Position and Image Orientation 10.3.2.5 Performing the Female Abdominal Pelvic Ultrasound Further Reading Chapter 11: Ultrasound of the Nervous System 11.1 Anatomy and Physiology of the Nervous System 11.2 Pupillary Light Reflex 11.3 Myotatic Stretch Reflex 11.3.1 Exercise 1: Ultrasonography of the Consensual Reflex 11.3.1.1 Learning Objectives 11.3.1.2 Transducer/Probe 11.3.1.3 Additional Equipment and Supplies for Exercise and Optional Assessment 11.3.1.4 Patient Position and Image Orientation 11.3.1.5 Performing the Pupillary Eye Examination 11.3.1.6 Optional Assessment of the Pupillary Response 11.3.2 Exercise 2: Ultrasonography of Stretch Reflex 11.3.2.1 Learning Objectives 11.3.2.2 Transducer/Probe 11.3.2.3 Additional Equipment and Supplies 11.3.2.4 Patient Position and Image Orientation 11.3.2.5 Performing the Stretch Reflex with B-mode: Transverse View 11.3.2.6 Optional Assessment of the Stretch Reflex Response Stretch Reflex with B- and M-Modes: Transverse View Stretch Reflex with B- and Doppler (Spectral) Modes: Transverse View Further Reading Chapter 12: Introducing Ultrasound into a Physiology Course from A to Z 12.1 Purchase of Ultrasound Systems 12.1.1 Number of Ultrasound Systems 12.1.2 Type of Systems 12.1.3 Demonstration, Testing, and Purchase Options 12.2 Models and Standardized Patients 12.3 Trained Instructors 12.4 Student Contact Hours for Ultrasound 12.5 Ultrasound Educational Materials and Student Assessment 12.5.1 Student Assessment 12.5.2 Estimated Student Time for Ultrasound When Initiating a Program 12.6 Student Feedback 12.7 Space and Equipment for Ultrasound Laboratory Sessions 12.8 Residency Ultrasound Training 12.9 Ultrasound Fellowship 12.10 Potential Sources of Funding for Ultrasound 12.10.1 Institutional Support 12.10.2 Industry Partnerships and Grants 12.10.3 Donations 12.10.4 Grants 12.10.5 Training Revenue Streams 12.10.6 Patents and Licenses 12.10.7 Student Fees 12.11 A Scaled-Back Model to Introduce Ultrasound into Physiology Courses with Limited Resources 12.12 Ultrasound Initiation Checklist Further Reading and Resources Journal Articles Online Resources