دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: STEVEN L. GARRETT
سری:
ISBN (شابک) : 9783030447861, 3030447863
ناشر: SPRINGER
سال نشر: 2020
تعداد صفحات: 811
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 32 مگابایت
در صورت تبدیل فایل کتاب UNDERSTANDING ACOUSTICS : an experimentalists view of sound and vibration. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب درک آکوستیک: دیدگاه تجربی در مورد صدا و ارتعاش. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
The Acoustical Society of America Preface to the Second Edition Preface to the First Edition List of Recurring Symbols Roman Lower Case Roman Lower Case Roman Upper Case Greek Lower Case Greek Upper Case Subscripted Upper-Case Roman Subscripted Lower-Case Roman Subscripted Lower-Case Greek Phasors Other Acknowledgments Contents About the Book About the Author Chapter 1: Comfort for the Computationally Crippled 1.1 The Five Most Useful Math Techniques 1.1.1 Taylor Series 1.1.2 The Product Rule or Integration by Parts 1.1.3 Logarithmic Differentiation 1.2 Equilibrium, Stability, and Hooke´s Law 1.2.1 Potentials and Forces 1.2.2 A Simple Pendulum 1.3 The Concept of Linearity 1.4 Superposition and Fourier Synthesis 1.5 Convenience (Complex) Numbers 1.5.1 Geometrical Interpretation on the Argand Plane 1.5.2 Phasor Notation 1.5.3 Algebraic Operations with Complex Numbers 1.5.4 Integration and Differentiation of Complex Exponentials 1.5.5 Time Averages of Complex Products (Power) 1.6 Standard (SI) Units and Dimensional Homogeneity 1.7 Similitude and the Buckingham Pi-Theorem (Natural Units) 1.7.1 Three Simple Examples 1.7.2 Dimensionless Pi-Groups 1.7.3 Windscreen Noise* 1.7.4 Similitude Summary 1.8 Precision, Accuracy, and Error Propagation 1.8.1 Random Errors (Noise) and Relative Uncertainty 1.8.2 Normal Error Function or the Gaussian Distribution 1.8.3 Systematic Errors (Bias) 1.8.4 Error Propagation and Covariance 1.8.5 Significant Figures 1.9 Least-Squares Fitting and Parameter Estimation 1.9.1 Linear Correlation Coefficient 1.9.2 Relative Error in the Slope 1.9.3 Linearized Least-Squares Fitting 1.9.4 Caveat for Data Sets with Small N* 1.9.5 Best-Fit to Models with More Than Two Adjustable Parameters 1.10 The Absence of Rigorous Mathematics Talk Like an Acoustician References Part I: Vibrations Chapter 2: The Simple Harmonic Oscillator 2.1 The Undamped Harmonic Oscillator 2.1.1 Initial Conditions and the Phasor Representation 2.2 The Lumped-Element Approximation 2.2.1 Series and Parallel Combinations of Several Springs 2.2.2 A Characteristic Speed 2.3 Energy 2.3.1 The Virial Theorem 2.3.2 Rayleigh´s Method 2.3.3 Gravitational Offset 2.3.4 Adiabatic Invariance 2.4 Damping and Free-Decay 2.4.1 Viscous Damping and Mechanical Resistance 2.4.2 Free-Decay Frequency and Quality Factor 2.4.3 Critical Damping 2.4.4 Thermal Equilibrium and Fluctuations 2.4.5 Frictional (Coulomb) Damping* 2.5 Driven Systems 2.5.1 Force-Driven SHO 2.5.2 Power Dissipation, the Decibel, and Resonance Bandwidth 2.5.3 Resonance Tracking and the Phase-Locked Loop* 2.5.4 Transient Response 2.5.5 The Electrodynamic Loudspeaker 2.5.6 Electrodynamic (Moving-Coil) Microphone 2.5.7 Displacement-Driven SHO and Transmissibility 2.6 Vibration Sensors 2.7 Coupled Oscillators 2.7.1 Two Identical Masses with Three Identical Springs 2.7.2 Coupled Equations for Identical Masses and Springs 2.7.3 Normal Modes and Normal Coordinates 2.7.4 Other Initial Conditions 2.7.5 General Solutions for Two Masses and Three Springs 2.7.6 Driven Oscillators, Level Repulsion, and Beating 2.7.7 String of Pearls 2.8 The Not-So-Simple (?) Harmonic Oscillator Talk Like an Acoustician References Chapter 3: String Theory 3.1 Waves on a Flexible String 3.2 Pulse Reflections at a Boundary and the Utility of Phantoms 3.3 Normal Modes and Standing Waves 3.3.1 Idealized Boundary Conditions 3.3.2 Consonance and Dissonance* 3.3.3 Consonant Triads and Musical Scales* 3.4 Modal Energy 3.4.1 Nature Is Efficient 3.4.2 Point Mass Perturbation 3.4.3 Heavy Chain Pendulum (Nonuniform Tension)* 3.5 Initial Conditions 3.5.1 Total Modal Energy 3.6 ``Imperfect´´ Boundary Conditions 3.6.1 Example: Standing Wave Modes for M/ms = 5 3.6.2 An Algebraic Approximation for the Mass-Loaded String 3.6.3 The Resistance-Loaded String* 3.7 Forced Motion of a Semi-Infinite String 3.8 Forced Motion of a Finite String 3.8.1 Displacement-Driven Finite String 3.8.2 Mass-Loaded String in the Impedance Model 3.8.3 Force-Driven Finite String 3.8.4 An Efficient Driver/Load Interaction 3.9 ``I´ve Got the World on a String ´´: Chapter Summary Talk Like an Acoustician References Chapter 4: Elasticity of Solids 4.1 Hooke, Young, Poisson, and Fourier 4.2 Isotropic Elasticity 4.2.1 Bulk Modulus 4.2.2 Modulus of Unilateral Compression 4.2.3 Shear Modulus 4.2.4 Two Moduli Provide a Complete (Isotropic) Description 4.3 Real Springs 4.3.1 Solids as Springs 4.3.2 Flexure Springs 4.3.3 Triangularly Tapered Cantilever Spring* 4.3.4 Buckling 4.3.5 Torsional Springs 4.3.6 Coil Springs 4.4 Viscoelasticity 4.4.1 The Maxwell (Relaxation Time) Model 4.4.2 Standard Linear Model (SLM) of Viscoelasticity 4.4.3 Complex Stiffnesses and Moduli* 4.4.4 Kramers-Kronig Relations 4.5 Rubber Springs 4.5.1 Effective Modulus 4.5.2 Rubber-to-Glass Transition (Type I and Type II Rubbers) 4.5.3 Transmissibility of Rubberlike Vibration Isolators 4.6 Anisotropic (Crystalline) Elasticity* 4.7 There Is More to Stiffness Than Just ``´´ Talk Like an Acoustician References Chapter 5: Modes of Bars 5.1 Longitudinal Waves in Thin Bars 5.1.1 Longitudinal Waves in Bulk Solids 5.1.2 The Quartz Crystal Microbalance 5.1.3 Bodine´s ``Sonic Hammer´´ 5.2 Torsional Waves in Thin Bars 5.3 Flexural Waves in Thin Bars 5.3.1 Dispersion 5.3.2 Flexural Wave Functions 5.3.3 Flexural Standing Wave Frequencies 5.3.4 Flexural Standing Wave Mode Shapes 5.3.5 Rayleigh Waves* 5.4 Resonant Determination of Elastic Moduli 5.4.1 Mode-Selective Electrodynamic Excitation and Detection 5.4.2 Bar Sample Size and Preparation 5.4.3 Measured Resonance Spectra 5.4.4 Effective Length Correction for Transducer Mass 5.4.5 Modes of a Viscoelastic Bar 5.4.6 Resonant Ultrasound Spectroscopy* 5.5 Vibrations of a Stiff String* 5.6 Harmonic Analysis Talk Like an Acoustician References Chapter 6: Membranes, Plates, and Microphones 6.1 Rectangular Membranes 6.1.1 Modes of a Rectangular Membrane 6.1.2 Modal Degeneracy 6.1.3 Density of Modes 6.2 Circular Membranes 6.2.1 Series Solution to the Circular Wave Equation 6.2.2 Modal Frequencies and Density for a Circular Membrane 6.2.3 Mode Similarities Illustrating Adiabatic Invariance 6.2.4 Normal Modes of Wedges and Annular Membranes* 6.2.5 Effective Piston Area for a Vibrating Membrane 6.2.6 Normal Mode Frequencies of Tympani 6.2.7 Pressure-Driven Circular Membranes 6.3 Response of a Condenser Microphone 6.3.1 Optimal Backplate Radius 6.3.2 Limits on Polarizing Voltages and Electrostatic Forces 6.3.3 Electret Condenser Microphone 6.4 Vibrations of Thin Plates 6.4.1 Normal Modes of a Clamped Circular Plate 6.5 Flatland Talk Like an Acoustician References Part II: Waves in Fluids Chapter 7: Ideal Gas Laws 7.1 Two Ways of Knowing-Phenomenology and Microscopics 7.1.1 Microscopic Models 7.1.2 Phenomenological Models 7.1.3 Adiabatic Equation of State for an Ideal Gas 7.1.4 Adiabatic Temperature Change 7.2 Specific Heats of Ideal Gases 7.2.1 Monatomic (Noble) Gases 7.2.2 Polyatomic Gases 7.3 The Fundamental Equations of Hydrodynamics 7.3.1 The Continuity Equation 7.3.2 The Navier-Stokes (Euler) Equation 7.3.3 The Entropy Equation 7.3.4 Closure with the Equation of State 7.4 Flashback Talk Like an Acoustician References Chapter 8: Nondissipative Lumped Elements 8.1 Oscillations About Equilibrium 8.2 Acoustical Compliance and the Continuity Equation 8.2.1 The Continuity Equation 8.2.2 Linearized Continuity Equation 8.2.3 Acoustical Compliance 8.2.4 The Gas Spring 8.3 Hydrostatic Pressure 8.4 Inertance and the Linearized Euler Equation 8.4.1 The Venturi Tube 8.4.2 The Linearized Euler Equation 8.4.3 Acoustical Inertance 8.4.4 Acoustical Mass 8.5 The Helmholtz Resonance Frequency 8.5.1 Helmholtz Resonator Network Analysis 8.5.2 A 500-mL Boiling Flask 8.6 DeltaEC Software 8.6.1 Download DeltaEC 8.6.2 Getting Started with DeltaEC (Thermophysical Properties) 8.6.3 Creating planewave.out 8.6.4 Running planewave.out 8.6.5 Finding the Resonance Frequencies of planewave.out 8.6.6 State Variable Plots (.sp) 8.6.7 Modifying planewave.out to Create Flask500.out 8.6.8 Interpreting the .out File 8.6.9 The RPN Segment 8.6.10 Power Flow and Dissipation in the 500 Ml Boiling Flask 8.6.11 An ``Effective Length´´ Correction 8.6.12 Incremental Plotting and the .ip File 8.6.13 So Much More Utility in DeltaEC 8.7 Coupled Helmholtz Resonators 8.8 The Bass-Reflex Loudspeaker Enclosure 8.8.1 Beranek´s Box Driven by a Constant Volume Velocity 8.8.2 Loudspeaker-Driven Bass-Reflex Enclosure* 8.9 Lumped Elements Talk like an Acoustician References Chapter 9: Dissipative Hydrodynamics 9.1 The Loss of Time Reversal Invariance 9.2 Ohm´s Law and Electrical Resistivity 9.3 Thermal Conductivity and Newton´s Law of Cooling 9.3.1 The Thermal Boundary Layer 9.3.2 Adiabatic Compression Within a Bounded Volume 9.3.3 Energy Loss in the Thermal Boundary Layer* 9.3.4 Adiabatic vs. Isothermal Propagation in an Ideal Gas 9.4 Viscosity 9.4.1 Poiseuille Flow in a Pipe of Circular Cross-Section 9.4.2 The Viscous Boundary Layer 9.4.3 Viscous Drag in the Neck of a Helmholtz Resonator 9.4.4 Quality Factors for a Helmholtz Resonator 9.5 Kinetic Theory of Thermal and Viscous Transport 9.5.1 Mean Free Path 9.5.2 Thermal Conductivity of an Ideal Gas 9.5.3 Viscosity of an Ideal Gas 9.5.4 Prandtl Number of an Ideal Gas and Binary Gas Mixtures* 9.6 Not a Total Loss Talk Like an Acoustician References Chapter 10: One-Dimensional Propagation 10.1 The Transition from Lumped Elements to Waves in Fluids 10.2 The Wave Equation 10.2.1 General Solutions to the Wave Equation 10.3 The Dispersion Relation (Phase Speed) 10.3.1 Speed of Sound in Liquids 10.3.2 Speed of Sound in Ideal Gases and Gas Mixtures 10.4 Harmonic Plane Waves and Characteristic Impedance 10.5 Acoustic Energy Density and Intensity 10.5.1 Decibel Scales 10.5.2 Superposition of Sound Levels (Rule for Adding Decibels) 10.5.3 Anthropomorphic Frequency Weighting of Sound Levels 10.6 Standing Waves in Rigidly Terminated Tubes 10.6.1 Quality Factor in a Standing Wave Resonator 10.6.2 Resonance Frequency in Closed-Open Tubes 10.7 Driven Plane Wave Resonators 10.7.1 Electroacoustic Transducer Sensitivities 10.7.2 The Principle of Reciprocity 10.7.3 In Situ Reciprocity Calibration 10.7.4 Reciprocity Calibration in Other Geometries 10.7.5 Resonator-Transducer Interaction 10.7.6 Electrodynamic Source Coupling Optimization* 10.8 Junctions, Branches, and Filters 10.8.1 Abrupt Discontinuities and the Acoustic Admittance 10.8.2 Tuned Band-Stop Filter 10.8.3 Stub Tuning 10.9 Quasi-One-Dimensional Propagation (Horns) 10.9.1 Semi-infinite Exponential Horns 10.9.2 Salmon Horns* 10.9.3 Horns of Finite Length* Talk Like an Acoustician References Chapter 11: Reflection, Transmission, and Refraction 11.1 Normal Incidence 11.2 Three Media 11.2.1 A Limp Diaphragm Separating Two Gases 11.2.2 An Impedance Matching Antireflective Layer 11.2.3 The ``Mass Law´´ for Sound Transmission Through Walls 11.2.4 Duct Constriction/Expansion Low-Pass Filters 11.3 Snell´s Law and Fermat´s Principle 11.3.1 Total Internal Reflection 11.3.2 The Rayleigh Reflection Coefficient 11.4 Constant Sound Speed Gradients 11.4.1 Constant Gradient´s Equivalence to Solid Body Rotation 11.4.2 Sound Channels 11.4.3 Propagation Delay* 11.4.4 Under Ice Propagation 11.4.5 Sound Focusing Talk Like an Acoustician References Chapter 12: Radiation and Scattering 12.1 Sound Radiation and the ``Causality Sphere´´ 12.2 Spherically Diverging Sound Waves 12.2.1 Compact Monopole Radiation Impedance 12.2.2 Compact Monopole Acoustic Transfer Impedance 12.2.3 General Multipole Expansion* 12.3 Bubble Resonance 12.3.1 Damping of Bubble Oscillations 12.4 Two In-Phase Monopoles 12.4.1 The Method of Images 12.5 Two Out-Of-Phase Compact Sources (Dipoles) 12.5.1 Dipole Radiation 12.5.2 Cardioid (Unidirectional) Radiation Pattern 12.5.3 Pressure Gradient Microphones 12.5.4 The DIFAR Directional Sonobuoy 12.6 Translational Oscillations of an Incompressible Sphere 12.6.1 Scattering from a Compact Density Contrast 12.6.2 Scattering from a Compact Compressibility Contrast 12.6.3 Scattering from a Single Bubble or a Swim Bladder 12.6.4 Multiple Scattering in the ``Effective Medium´´ Approximation 12.7 N-Element Discrete Line Array 12.7.1 Beam Steering and Shading 12.7.2 Continuous Line Array 12.8 Baffled Piston 12.8.1 Rayleigh Resolution Criterion 12.8.2 Directionality and Directivity 12.8.3 Radiation Impedance of a Baffled Circular Piston 12.8.4 Radiation Impedance of a Baffled Rectangular Piston* 12.8.5 On-Axis Near-Field Pressure from a Circular Baffled Piston* 12.9 Radiation Impedance of an Unbaffled Piston 12.10 Linear Superposition Talk Like an Acoustician References Chapter 13: Three-Dimensional Enclosures 13.1 Separation of Variables in Cartesian Coordinates 13.1.1 Rigid-Walled Rectangular Room 13.1.2 Mode Characterization 13.1.3 Mode Excitation 13.1.4 Density of Modes 13.2 Statistical Energy Analysis 13.2.1 The Sabine Equation 13.2.2 Critical Distance and the Schroeder Frequency 13.3 Modes of a Cylindrical Enclosure 13.3.1 Pressure Field Within a Rigid Cylinder and Normal Modes 13.3.2 Modal Density Within a Rigid Cylinder 13.3.3 Modes of a Rigid-Walled Toroidal Enclosure* 13.3.4 Modal Degeneracy and Mode Splitting 13.3.5 Modes in Non-separable Coordinate Geometries 13.4 Radial Modes of Spherical Resonators 13.4.1 Pressure-Released Spherical Resonator 13.4.2 Rigid-Walled Spherical Resonator 13.5 Waveguides 13.5.1 Rectangular Waveguide 13.5.2 Phase Speed and Group Speed 13.5.3 Driven Waveguide 13.5.4 Cylindrical Waveguide 13.5.5 Attenuation from Thermoviscous Boundary Losses Talk Like an Acoustician References Chapter 14: Attenuation of Sound 14.1 An Almost Correct Expression for Viscous Attenuation 14.2 Bulk Thermoviscous Attenuation in Fluids 14.3 Classical Thermoviscous Attenuation 14.4 The Time-Dependent Equation of State 14.5 Attenuation due to Internal Relaxation Times 14.5.1 Relaxation Attenuation in Gases and Gas Mixtures 14.5.2 Relaxation Attenuation in Fresh and Salt Water 14.6 Transmission Loss 14.6.1 Short and Very Short Wavelengths 14.6.2 Very Long Wavelengths 14.7 Quantum Mechanical Manifestations in Classical Mechanics Talk Like an Acoustician References Part III: Extensions Chapter 15: Nonlinear Acoustics 15.1 Surf´s Up 15.1.1 The Grüneisen Parameter 15.1.2 The Virial Expansion and B/2A 15.1.3 Anomalous Distortion* 15.1.4 The Gol´dberg Number 15.1.5 Stable Sawtooth Waveform Attenuation 15.2 Weak Shock Theory and Harmonic Distortion 15.2.1 The Order Expansion 15.2.2 Trigonometric Expansion of the Earnshaw Solution 15.2.3 Higher Harmonic Generation 15.3 The Phenomenological Model 15.3.1 The (Nondissipative) Nonlinear Wave Equation 15.3.2 Geometrical Resonance (Phase Matching) 15.3.3 Intermodulation Distortion and the Parametric End-Fire Array 15.3.4 Resonant Mode Conversion 15.4 Non-zero Time-Averaged Effects 15.4.1 The Second-Order Pressure in an Adiabatic Compression 15.4.2 The Bernoulli Pressure 15.4.3 The Rayleigh Disk 15.4.4 Radiation Pressure 15.4.5 Acoustic Levitation in Standing Waves 15.4.6 Adiabatic Invariance and the Levitation Force 15.4.7 Levitation Superstability (``Acoustic Molasses´´) 15.5 Beyond the Linear Approximation Talk Like an Acoustician References Appendices Appendix A: Useful Physical Constants and Conversion Factors Appendix B: Resonator Quality Factor Appendix C: Bessel Functions of the First Kind Appendix D: Trigonometric Functions Appendix E: Hyperbolic Functions Index