دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Yan Wang (editor). David L. McDowell (editor)
سری: Elsevier Series in Mechanics of Advanced Materials
ISBN (شابک) : 0081029411, 9780081029411
ناشر: Woodhead Publishing
سال نشر: 2020
تعداد صفحات: 589
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Uncertainty Quantification in Multiscale Materials Modeling به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کمی سازی عدم قطعیت در مدل سازی مواد چند مقیاسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کمیسازی عدم قطعیت در مدلسازی مواد چند مقیاسی نمای کلی کاملی از کمیسازی عدم قطعیت (UQ) در علم مواد محاسباتی ارائه میکند. ابزارها و روشهای عملی را همراه با مثالهایی از کاربرد آنها در مسائل مدلسازی مواد ارائه میدهد. روشهای UQ برای مدلهای چند مقیاسی مختلف از مقیاس نانو تا مقیاس کلان اعمال میشوند. این کتاب ترکیب کاملی از پیشرفتهترین روشهای UQ برای مدلسازی مواد، از جمله استنتاج بیزی، مدلسازی جایگزین، میدانهای تصادفی، تحلیل بازهای و تحلیل حساسیت را ارائه میکند و بینشی در مورد ویژگیهای منحصربهفرد مدلهای قاببندی شده در هر یک ارائه میکند. مقیاس، و همچنین مسائل رایج در مدلسازی در مقیاسها.
Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.
Cover Mechanics of Advanced Materials Series Series editor-in-chief: Vadim V. Silberschmidt Series editor: Thomas Böhlke Series editor: David L. McDowell Series editor: Zhong Chen Uncertainty Quantification in Multiscale Materials Modeling Copyright Contributors About the Series editors Editor-in-Chief Series editors Preface 1 - Uncertainty quantification in materials modeling 1.1 Materials design and modeling 1.2 Sources of uncertainty in multiscale materials modeling 1.2.1 Sources of epistemic uncertainty in modeling and simulation 1.2.2 Sources of model form and parameter uncertainties in multiscale models 1.2.2.1 Models at different length and time scales 1.2.3 Linking models across scales 1.3 Uncertainty quantification methods 1.3.1 Monte Carlo simulation 1.3.2 Global sensitivity analysis 1.3.3 Surrogate modeling 1.3.4 Gaussian process regression 1.3.5 Bayesian model calibration and validation 1.3.6 Polynomial chaos expansion 1.3.7 Stochastic collocation and sparse grid 1.3.8 Local sensitivity analysis with perturbation 1.3.9 Polynomial chaos for stochastic Galerkin 1.3.10 Nonprobabilistic approaches 1.4 UQ in materials modeling 1.4.1 UQ for ab initio and DFT calculations 1.4.2 UQ for MD simulation 1.4.3 UQ for meso- and macroscale materials modeling 1.4.4 UQ for multiscale modeling 1.4.5 UQ in materials design 1.5 Concluding remarks Acknowledgments References 2 - The uncertainty pyramid for electronic-structure methods 2.1 Introduction 2.2 Density-functional theory 2.2.1 The Kohn–Sham formalism 2.2.2 Computational recipes 2.3 The DFT uncertainty pyramid 2.3.1 Numerical errors 2.3.2 Level-of-theory errors 2.3.3 Representation errors 2.4 DFT uncertainty quantification 2.4.1 Regression analysis 2.4.2 Representative error measures 2.5 Two case studies 2.5.1 Case 1: DFT precision for elemental equations of state 2.5.2 Case 2: DFT precision and accuracy for the ductility of a W–Re alloy 2.6 Discussion and conclusion Acknowledgment References 3 - Bayesian error estimation in density functional theory 3.1 Introduction 3.2 Construction of the functional ensemble 3.3 Selected applications 3.4 Conclusion References 4 - Uncertainty quantification of solute transport coefficients 4.1 Introduction 4.2 Diffusion model 4.3 Methodology for uncertainty quantification 4.4 Computational details 4.5 Results and discussion 4.5.1 Distribution of parameters 4.5.2 Distribution of diffusivities 4.5.3 Distribution of drag ratios 4.6 Conclusion References 5 - Data-driven acceleration of first-principles saddle point and local minimum search based on scalable Gaussian processes 5.1 Introduction 5.2 Literature review 5.3 Concurrent search of local minima and saddle points 5.3.1 Concurrent searching method 5.3.2 Curve swarm searching method 5.3.3 Concurrent searching method assisted by GP model 5.3.4 Benchmark on synthetic examples 5.4 GP-DFT: a physics-based symmetry-enhanced local Gaussian process 5.4.1 Symmetry invariance in materials systems 5.4.2 Efficient exploit of symmetry property 5.4.3 Dynamic clustering algorithm for GP-DFT 5.4.4 Prediction using multiple local GP 5.5 Application: hydrogen embrittlement in iron systems 5.5.1 Hydrogen embrittlement in FeTiH 5.5.2 Hydrogen embrittlement in pure bcc iron, Fe8H 5.5.3 Hydrogen embrittlement in pure bcc iron, Fe8H, using GP-DFT 5.6 Discussions 5.7 Conclusion Acknowledgments References 6 - Bayesian calibration of force fields for molecular simulations 6.1 Introduction 6.2 Bayesian calibration 6.2.1 The standard Bayesian scheme 6.2.1.1 Bayes' theorem 6.2.1.2 Validation 6.2.1.3 Model selection 6.2.2 Limitations of the standard scheme 6.2.2.1 Modeling of the error sources 6.2.2.2 Data inconsistency 6.2.2.3 Model inadequacy/model errors 6.2.3 Advanced Bayesian schemes 6.2.3.1 Additive model correction 6.2.3.2 Hierarchical models 6.2.3.3 Stochastic Embedding models 6.2.3.4 Approximate Bayesian Computation 6.3 Computational aspects 6.3.1 Sampling from the posterior PDF 6.3.2 Metamodels 6.3.2.1 Kriging 6.3.2.2 Adaptive learning of kriging metamodels 6.3.2.3 Polynomial Chaos expansions 6.3.3 Approximation of intractable posterior PDFs 6.3.4 High-performance computing for Bayesian inference 6.4 Applications 6.4.1 Introductory example: two-parameter Lennard-Jones fluids 6.4.1.1 The Lennard-Jones potential 6.4.1.2 Bayesian calibration 6.4.1.3 Hierarchical model 6.4.1.4 Uncertainty propagation through molecular simulations 6.4.1.5 Model improvement and model selection 6.4.1.6 Summary 6.4.2 Use of surrogate models for force field calibration 6.4.2.1 Polynomial Chaos expansions 6.4.2.1.1 Calibration using an uncertain PC surrogate model 6.4.2.2 Gaussian processes and efficient global Optimization strategies 6.4.3 Model selection and model inadequacy 6.5 Conclusion and perspectives Abbreviations and symbols References 7 - Reliable molecular dynamics simulations for intrusive uncertainty quantification using generalized interval analysis 7.1 Introduction 7.2 Generalized interval arithmetic 7.3 Reliable molecular dynamics mechanism 7.3.1 Interval interatomic potential 7.3.1.1 Interval potential: Lennard-Jones 7.3.1.2 Interval potential: Morse potential 7.3.1.3 Interval potential: embedded atomic method potential 7.3.2 Interval-valued position, velocity, and force 7.3.3 Uncertainty propagation schemes in R-MD 7.3.3.1 Midpoint–radius or nominal–radius scheme 7.3.3.2 Lower–upper bound scheme 7.3.3.3 Total uncertainty principle scheme 7.3.3.4 Interval statistical ensemble scheme: interval isothermal-isobaric (NPT) ensemble 7.4 An example of R-MD: uniaxial tensile loading of an aluminum single crystal oriented in <100﹥ direction 7.4.1 Simulation settings 7.4.2 Interval EAM potential for aluminum based on Mishin's potential 7.4.3 Numerical results 7.4.4 Comparisons of numerical results for different schemes 7.4.5 Verification and validation 7.4.6 Finite size effect 7.5 Discussion 7.6 Conclusions Acknowledgment References 8 - Sensitivity analysis in kinetic Monte Carlo simulation based on random set sampling 8.1 Introduction 8.2 Interval probability and random set sampling 8.3 Random set sampling in KMC 8.3.1 Event selection 8.3.2 Clock advancement 8.3.2.1 When events are independent 8.3.2.2 When events are correlated 8.3.3 R-KMC sampling algorithm 8.4 Demonstration 8.4.1 Escherichia coli reaction network 8.4.2 Methanol decomposition on Cu 8.4.3 Microbial fuel cell 8.5 Summary Acknowledgment References 9 - Quantifying the effects of noise on early states of spinodal decomposition: Cahn–Hilliard–Cook equation and energy-based me ... 9.1 Introduction 9.2 Cahn–Hilliard–Cook model 9.3 Methodology 9.3.1 Formulation 9.3.2 Weak formulation 9.3.3 Galerkin approximation 9.3.4 Time scheme 9.4 Morphology characterization 9.5 Numerical implementation 9.5.1 Spatial discretization 9.5.2 Time discretization 9.5.3 Parallel space–time noise generation 9.5.4 Scalability analysis 9.6 Results 9.6.1 Energy-driven analysis and noise effects 9.6.1.1 Effect of initial noise 9.6.2 Domain size analysis 9.6.3 Nonperiodic domains 9.6.4 Enforcing fluctuation–dissipation 9.7 Conclusions References 10 - Uncertainty quantification of mesoscale models of porous uranium dioxide 10.1 Introduction 10.2 Applying UQ at the mesoscale 10.3 Grain growth 10.3.1 Introduction 10.3.2 Model summaries 10.3.3 Sensitivity analysis 10.3.4 Uncertainty quantification 10.4 Thermal conductivity 10.4.1 Introduction 10.4.2 Model summaries 10.4.3 Sensitivity analysis 10.4.4 Uncertainty quantification 10.5 Fracture 10.5.1 Introduction 10.5.2 Model summaries 10.5.3 Sensitivity analysis 10.5.4 Uncertainty quantification 10.6 Conclusions Acknowledgments References 11 - Multiscale simulation of fiber composites with spatially varying uncertainties 11.1 Background and literature review 11.2 Our approach for multiscale UQ and UP 11.2.1 Multiresponse Gaussian processes for uncertainty quantification 11.2.2 Top-down sampling for uncertainty propagation 11.3 Uncertainty quantification and propagation in cured woven fiber composites 11.3.1 Uncertainty sources 11.3.2 Multiscale finite element simulations 11.3.3 Top-down sampling, coupling, and random field modeling of uncertainty sources 11.3.4 Dimension reduction at the mesoscale via sensitivity analysis 11.3.5 Replacing meso- and microscale simulations via metamodels 11.3.6 Results on macroscale uncertainty 11.4 Conclusion and future works Appendix Details on the sensitivity studies at the mesoscale Conditional distribution Acknowledgments References 12 - Modeling non-Gaussian random fields of material properties in multiscale mechanics of materials 12.1 Introduction 12.2 Methodology and elementary example 12.2.1 Definition of scales 12.2.2 On the representation of random fields 12.2.3 Information-theoretic description of random fields 12.2.4 Getting started with a toy problem 12.3 Application to matrix-valued non-Gaussian random fields in linear elasticity 12.3.1 Preliminaries 12.3.2 Setting up the MaxEnt formulation 12.3.3 Defining the non-Gaussian random field 12.3.4 Application to transversely isotropic materials 12.3.4.1 Formulation 12.3.4.2 Two-dimensional numerical illustration 12.4 Application to vector-valued non-Gaussian random fields in nonlinear elasticity 12.4.1 Background 12.4.2 Setting up the MaxEnt formulation 12.4.3 Defining random field models for strain energy functions 12.5 Conclusion Acknowledgments References 13 - Fractal dimension indicator for damage detection in uncertain composites 13.1 Introduction 13.2 Formulation 13.2.1 Finite element model of composite plate 13.2.2 Matrix crack modeling 13.2.3 Fractal dimension 13.2.4 Spatial uncertainty in material property 13.3 Numerical results 13.3.1 Localized damage detection based on fractal dimension–based approach 13.3.2 Spatial uncertainty 13.4 Conclusions References 14 - Hierarchical multiscale model calibration and validation for materials applications 14.1 Introduction 14.2 Multiresponse, multiscale TDBU HMM calibration 14.2.1 Background 14.2.2 Formulation 14.3 Usage: TDBU calibration of CP of bcc Fe 14.3.1 Background 14.3.2 Crystal plasticity model 14.3.3 Parameter estimates and data 14.3.4 Implementation of the method 14.4 Between the models: connection testing 14.4.1 Background 14.4.2 Formulation 14.5 Usage: test of TDBU connection in CP of bcc Fe 14.5.1 Background 14.5.2 Implementation 14.5.3 Sensitivity study of σp2 14.6 Discussion and extensions to validation Acknowledgments References 15 - Efficient uncertainty propagation across continuum length scales for reliability estimates 15.1 Introduction 15.2 Hierarchical reliability approach 15.3 Stochastic reduced–order models 15.3.1 Construction of a stochastic reduced–order model 15.3.2 SROM-based surrogate model and Monte Carlo simulation 15.4 Concurrent coupling 15.5 Applications examples 15.5.1 Failure of a housing assembly 15.5.1.1 Objective 15.5.1.2 Model definition 15.5.1.3 Uncertainty 15.5.1.4 Results 15.5.2 Apparent modulus of a cubic-elastic, micron-size plate in plane strain 15.5.2.1 Objective 15.5.2.2 Model definition 15.5.2.3 Uncertainty 15.5.2.4 Results 15.5.3 Multiscale uncertainty propagation 15.5.3.1 Objective 15.5.3.2 Model definition 15.5.3.3 Uncertainty 15.5.3.4 Results 15.5.4 Summary and discussion 15.6 Conclusions Nomenclature Acknowledgments References 16 - Bayesian Global Optimization applied to the design of shape-memory alloys 16.1 Introduction 16.2 Bayesian Global Optimization 16.2.1 Surrogate model with uncertainties 16.2.2 Utility functions 16.3 Design of new shape-memory alloys 16.3.1 Searching for NiTi-based shape-memory alloys with high transformation temperature 16.3.2 Search for very low thermal hysteresis NiTi-based shape-memory alloys 16.4 Summary References 17 - An experimental approach for enhancing the predictability of mechanical properties of additively manufactured architected m ... 17.1 Introduction 17.2 A strategy for predicting the mechanical properties of additively manufactured metallic lattice structures via strut-level ... 17.3 Experimental investigation of the mechanical properties of DMLS octet lattice structures 17.3.1 Fabrication of octet truss lattice structures and tensile bars 17.3.2 Dimensional accuracy and relative density analysis of octet truss lattice structures 17.3.3 Tension testing of standard tensile bars 17.3.4 Compression testing of octet truss lattice structures 17.4 Finite element analysis of the DMLS octet lattice structures based on bulk material properties 17.5 Experimental investigation of the mechanical properties of DMLS lattice struts 17.6 Finite element analysis of the DMLS octet lattice structures based on strut-level properties 17.7 Opportunities for expanding the experimental study to better inform the finite element modeling 17.8 Discussion Appendix Acknowledgments References Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Back Cover