ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Uncertainty in Artificial Intelligence. Proceedings of the Ninth Conference (1993)

دانلود کتاب عدم قطعیت در هوش مصنوعی مجموعه مقالات کنفرانس نهم (1993)

Uncertainty in Artificial Intelligence. Proceedings of the Ninth Conference (1993)

مشخصات کتاب

Uncertainty in Artificial Intelligence. Proceedings of the Ninth Conference (1993)

ویرایش:  
 
سری:  
ISBN (شابک) : 9781483214511 
ناشر: Elsevier Inc 
سال نشر: 1993 
تعداد صفحات: 529 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 مگابایت 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Uncertainty in Artificial Intelligence. Proceedings of the Ninth Conference (1993) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب عدم قطعیت در هوش مصنوعی مجموعه مقالات کنفرانس نهم (1993) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Content: 
Front Matter, Page i
Copyright, Page ii
Preface, Page vii, David Heckerman, Abe Mamdani, Michael P. Wellman
Acknowledgements, Page viii
Causality in Bayesian Belief Networks, Pages 3-11, Marek J. Druzdzel, Herbert A. Simon
From Conditional Oughts to Qualitative Decision Theory, Pages 12-20, Judea Pearl
A Probabilistic Algorithm for Calculating Structure: Borrowing from Simulated Annealing, Pages 23-31, Russ B. Altman
A Study of Scaling Issues in Bayesian Belief Networks for Ship Classification, Pages 32-39, S.A. Musman, L.W. Chang
TRADEOFFS IN CONSTRUCTING AND EVALUATING TEMPORAL INFLUENCE DIAGRAMS, Pages 40-47, Gregory M. Provan
End-User Construction of Influence Diagrams for Bayesian Statistics, Pages 48-54, Harold P. Lehmann, Ross D. Shachter
On Considering Uncertainty and Alternatives in Low-Level Vision, Pages 55-63, Steven M. LaValle, Seth A. Hutchinson
Forecasting Sleep Apnea with Dynamic Network Models, Pages 64-71, Paul Dagum, Adam Galper
Normative Engineering Risk Management Systems, Pages 72-79, Peter J. Regan
Diagnosis of Multiple Faults: A Sensitivity Analysis, Pages 80-87, David Heckerman, Michael Shwe
Additive Belief-Network Models, Pages 91-98, Paul Dagum, Adam Galper
Parameter adjustment in Bayes networks. The generalized noisy OR–gate, Pages 99-105, F.J. Díez
A fuzzy relation-based extension of Reggia\'s relational model for diagnosis handling uncertain and incomplete information, Pages 106-113, Didier Dubois, Henri Prade
Dialectic reasoning with inconsistent information, Pages 114-121, Morten Elvang-Gøransson, Paul Krause, John Fox
Causal Independence for Knowledge Acquisition and Inference, Pages 122-127, David Heckerman
Utility-Based Abstraction and Categorization, Pages 128-135, Eric J. Horvitz, Adrian C. Klein
Sensitivity Analysis for Probability Assessments in Bayesian Networks, Pages 136-142, Kathryn Blackmond Laskey
Causal Modeling, Pages 143-151, John F. Lemmer
Some Complexity Considerations in the Combination of Belief Networks, Pages 152-158, Izhar Matzkevich, Bruce Abramson
Deriving a Minimal I-map of a Belief Network Relative to a Target Ordering of its Nodes, Pages 159-165, Izhar Matzkevich, Bruce Abramson
Probabilistic Conceptual Network: A Belief Representation Scheme for Utility-Based Categorization, Pages 166-173, Kim Leng Poh, Michael R. Fehling
Reasoning about the Value of Decision-Model Refinement: Methods and Application, Pages 174-182, Kim Leng Poh, Eric J. Horvitz
Mixtures of Gaussians and Minimum Relative Entropy Techniques for Modeling Continuous Uncertainties, Pages 183-190, William B. Poland, Ross D. Shachter
Valuation Networks and Conditional Independence, Pages 191-199, Prakash P. Shenoy
Relevant Explanations: Allowing Disjunctive Assignments, Pages 200-207, Solomon Eyal Shimony
A Generalization of the Noisy-Or Model, Pages 208-215, Sampath Srinivas
Using First-Order Probability Logic for the Construction of Bayesian Networks, Pages 219-226, Fahiem Bacchus
Representing and Reasoning With Probabilistic Knowledge: A Bayesian Approach, Pages 227-234, Marie des Jardins
Graph-Grammar Assistance for Automated Generation of Influence Diagrams, Pages 235-242, John W. Egar, Mark A. Musen
Using Causal Information and Local Measures to Learn Bayesian Networks, Pages 243-250, Wai Lam, Fahiem Bacchus
Minimal Assumption Distribution Propagation in Belief Networks, Pages 251-258, Ron Musick
An Algorithm for the Construction of Bayesian Network Structures from Data, Pages 259-265, Moninder Singh, Marco Valtorta
A Construction of Bayesian Networks from Databases Based on an MDL Principle, Pages 266-273, Joe Suzuki
Knowledge-Based Decision Model Construction for Hierarchical Diagnosis: A Preliminary Report, Pages 274-281, Soe-Tsyr Yuan
A Synthesis of Logical and Probabilistic Reasoning for Program Understanding and Debugging, Pages 285-291, Lisa J. Burnell, Eric J. Horvitz
An Implementation of a Method for Computing the Uncertainty in Inferred Probabilities in Belief Networks, Pages 292-300, Peter Che, Richard E. Neapolitan, James Kenevan, Martha Evens
Incremental Probabilistic Inference, Pages 301-308, Bruce D\'Ambrosio
Deliberation Scheduling for Time-Critical Sequential Decision Making, Pages 309-316, Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, Ann Nicholson
Intercausal Reasoning with Uninstantiated Ancestor Nodes, Pages 317-325, Marek J. Druzdzel, Max Henrion
Inference Algorithms for Similarity Networks, Pages 326-334, Dan Geiger, David Heckerman
Two Procedures for Compiling Influence Diagrams, Pages 335-341, Paul E. Lehner, Azar Sadigh
An efficient approach for finding the MPE in belief networks, Pages 342-349, Zhaoyu Li, Bruce D\'Ambrosio
A Method for Planning Given Uncertain and Incomplete Information, Pages 350-358, Todd Michael Mansell
The use of conflicts in searching Bayesian networks, Pages 359-367, David Poole
GALGO: A Genetic ALGOrithm Decision Support Tool for Complex Uncertain Systems Modeled with Bayesian Belief Networks, Pages 368-375, Carlos Rojas-Guzmán, Mark A. Kramer
Using Tree-Decomposable Structures to Approximate Belief Networks, Pages 376-382, Sumit Sarkar
Using Potential Influence Diagrams for Probabilistic Inference and Decision Making, Pages 383-390, Ross D. Shachter, Pierre Ndilikilikesha
Deciding Morality of Graphs is NP-complete, Pages 391-399, T.S. Verma, J. Pearl
Incremental computation of the value of perfect information in stepwise-decomposable influence diagrams, Pages 400-407, Nevin Zhang Lianwen, Runping Qi, David Poole
Argumentative inference in uncertain and inconsistent knowledge bases, Pages 411-419, Salem Benferhat, Didier Dubois, Henri Prade
Argument Calculus and Networks, Pages 420-427, Adnan Y. Darwiche
Argumentation as a General Framework for Uncertain Reasoning, Pages 428-434, John Fox, Paul Krause, Morten EIvang-Gøransson
On reasoning in networks with qualitative uncertainty, Pages 435-442, Simon Parsons, E.H. Mamdani
Qualitative Measures of Ambiguity, Pages 443-450, S.K.M. Wong, Z.W. Wang
A BAYESIAN VARIANT OF SHAFER\'S COMMONALITIES FOR MODELLING UNFORESEEN EVENTS, Pages 453-460, Robert F. Bordley
The Probability of a Possibility: Adding Uncertainty to Default Rules, Pages 461-468, Craig Boutilier
Possibilistic decreasing persistence, Pages 469-476, Dimiter Driankov, Jérôme Lang
DISCOUNTING AND COMBINATION OPERATIONS IN EVIDENTIAL REASONING, Pages 477-484, J.W. Guan, D.A. Bell
Probabilistic Assumption-Based Reasoning, Pages 485-491, Jürg Kohlas, Paul-André Monney
Partially Specified Belief Functions, Pages 492-499, Serafín Moral, Luis M. de Campos
Jeffrey\'s rule of conditioning generalized to belief functions., Pages 500-505, Philippe SMETS
Inference with Possibilistic Evidence, Pages 506-514, Fengming Song, Ping Liang
Constructing Lower Probabilities, Pages 515-518, Carl Wagner, Bruce Tonn
Belief Revision in Probability Theory, Pages 519-526, Pei Wang
The Assumptions Behind Dempster\'s Rule, Pages 527-534, Nic Wilson
A Belief-Function Based Decision Support System, Pages 535-542, Hong Xu, Yen-Teh Hsia, Philippe Smets
Author Index, Page 553




نظرات کاربران