دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Takayoshi Kobayashi
سری:
ISBN (شابک) : 0367184710, 9780367184711
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 708
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 54 مگابایت
در صورت تبدیل فایل کتاب Ultrashort Pulse Lasers and Ultrafast Phenomena به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب لیزرهای پالس اولترا کوتاه و پدیده های فوق سریع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Author Section 1 Generation of Ultrashort Pulses in Deep Ultraviolet to Near Infrared Section 1.1 Ultrashort Visible Near-Infrared Pulses Chapter 1.1.1 Noncollinearly Phase-Matched Femtosecond Optical Parametric Amplification with a 2000 cm[sup(–1)] Bandwidth References Chapter 1.1.2 Simultaneous Compression and Amplification of a Laser Pulse in a Glass Plate 1.1.2.1 Introduction 1.1.2.2 Principle 1.1.2.3 Experimental Setup 1.1.2.4 Experimental Results and Discussion 1.1.2.5 Conclusion References Chapter 1.1.3 Pulse-Front-Matched Optical Parametric Amplification for Sub-10-fs Pulse Generation Tunable in the Visible and Near Infrared 1.1.3.1 Introduction 1.1.3.2 Experimental 1.1.3.3 Results and Discussion 1.1.3.4 Conclusion References Chapter 1.1.4 Visible 4 fs Pulse From Dispersion Control Optical Parametric Amplifier 1.1.4.1 Introduction 1.1.4.2 Configuration of the System 1.1.4.3 Analysis and Discussion 1.1.4.4 Conclusion References Chapter 1.1.5 Ultrafast Laser System Based on Noncollinear Optical Parametric Amplification for Laser Spectroscopy 1.1.5.1 Introduction 1.1.5.2 Experimental 1.1.5.3 Results and Discussion 1.1.5.4 Conclusion References Chapter 1.1.6 Development of Ultrashort Pulse Lasers for Ultrafast Spectroscopy 1.1.6.1 Introduction 1.1.6.2 Light Sources for Studying Ultrafast Processes 1.1.6.3 Electronic Relaxation and Vibrational Dynamics 1.1.6.4 Principles and Advantages of Broad-Band Ultrafast Spectroscopy 1.1.6.5 Ultrashort Visible Pulse Generation Based on Non-Linear Optical Parametric Amplifier (NOPA) 1.1.6.6 Ultrashort Deep Ultraviolet Laser 1.1.6.6.1 DUV Pulse Generation 1.1.6.6.2 Sub-10 fs DUV Laser Pulse Obtained by Broad-Band CPFWM 1.1.6.6.3 DUV Pulse Stability Optimization 1.1.6.7 Conclusion References Section 1.2 Ultrashort Ultraviolet, Deep-Ultraviolet, and Infrared Pulses Chapter 1.2.1 Generation of Stable Sub-10 fs Pulses at 400 nm in a Hollow Fiber for UV Pump-Probe Experiment 1.2.1.1 Introduction 1.2.1.2 Experimental Setup 1.2.1.3 Experimental Results and Discussion 1.2.1.4 Conclusion References Chapter 1.2.2 Sub-10 fs Deep-Ultraviolet Pulses Generated by Chirped-Pulse Four-Wave Mixing 1.2.2.1 Introduction 1.2.2.2 Experimental 1.2.2.3 Results and Discussion 1.2.2.4 Conclusion References Chapter 1.2.3 Generation and Optimization of Femtosecond Pulses by Four-Wave Mixing Process 1.2.3.1 Introduction 1.2.3.2 Cascaded FWM in Bulk Media 1.2.3.2.1 Principle of Cascaded FWM 1.2.3.2.2 Generation of Wavelength-Tunable Self-Compressed Multicolored Pulses by Nondegenerate Cascaded FWM 1.2.3.2.3 Pulse Cleaning by Degenerate Cascaded FWM 1.2.3.3 UV Pulse Generation by FWM in Hollow Fiber 1.2.3.3.1 Chirped-Pulse FWM in a Gas-Filled Hollow Waveguide 1.2.3.3.2 Broadband Chirped-Pulse FWM 1.2.3.3.3 Practical Issues in Broadband Chirped-Pulse FWM 1.2.3.3.4 Sub-10-fs DUV Pulses Generated by Broadband Chirped-Pulse FWM 1.2.3.4 Four-Wave Optical Parametric Amplification (FWOPA) in Bulk Media 1.2.3.5 Conclusion and Prospects References Section 2 Generation of Ultrashort Pulses in Terahertz Chapter 2.1 Sellmeier Dispersion for Phase-Matched Terahertz Generation in Nonlinear Optical Crystal: An Example of ZnGeP[sub(2)]. 2.1.1 Introduction 2.1.2 Derivation of the Sellmeier Dispersion 2.1.3 Generation of Terahertz Radiation with a Nd:YAG Laser 2.1.4 Generation of Terahertz Radiation with CO[sub(2)] Lasers 2.1.5 Discussion 2.1.6 Conclusion References Chapter 2.2 Saturation of the Free Carrier Absorption in ZnTe Crystals 2.2.1 Introduction 2.2.2 Experiments 2.2.2.1 THz Generation in ZnTe Crystals 2.2.2.2 Photoluminescence Radiated From ZnTe Crystals 2.2.3 Discussion 2.2.4 Conclusion References Chapter 2.3 Widely Linear and Non-Phase-Matched Optical-to-Terahertz Conversion on GaSe: Te Crystals 2.3.1 Introduction 2.3.2 Experimental 2.3.3 Results and Discussions 2.3.4 Conclusion References Chapter 2.4 THz Emission from Organic Cocrystalline Salt: An Example of 2, 6-Diaminopyridinium-4-Nitrophenolate-4-Nitrophenol 2.4.1 Introduction 2.4.2 Sample Preparation and THz Emission Experiments 2.4.3 Results and Discussion 2.4.4 Summary References Section 3 CEP (Octave-Span) Chapter 3.1 Quasi-Monocyclic Near-Infrared Pulses with a Stabilized Carrier-Envelope Phase Characterized by Noncollinear Cross-Correlation Frequency-Resolved Optical Gating 3.1.1 Introduction 3.1.2 Experimental 3.1.3 Conclusion References Chapter 3.2 Self-Stabilization of the Carrier-Envelope Phase of an Optical Parametric Amplifier Verified with a Photonic Crystal Fiber 3.2.1 Introduction 3.2.2 Experimental 3.2.3 Results and Discussion 3.2.4 Conclusion References Chapter 3.3 Octave-Spanning Carrier-Envelope Phase Stabilized Visible Pulse with Sub-3-fs Pulse Duration 3.3.1 Introduction 3.3.2 Results and Discussion 3.3.3 Conclusion References Chapter 3.4 Carrier-Envelope-Phase-Stable, Intense Ultrashort Pulses in Near Infrared 3.4.1 Introduction 3.4.2 Experimental 3.4.3 Results and Discussion 3.4.4 Conclusion References Section 4 Simple NLO Processes with a Few Colors Chapter 4.1 Three-Photon-Induced Four-Photon Absorption and Nonlinear Refraction in ZnO Quantum Dots 4.1.1 Introduction 4.1.2 Experimental 4.1.3 Results and Discussion 4.1.4 Conclusion References Chapter 4.2 Femtosecond Pulses Cleaning by Transient-Grating Process in Optical Media 4.2.1 Introduction 4.2.2 Experimental 4.2.3 Results and Discussion 4.2.4 Conclusion References Chapter 4.3 Non-Degenerate Two-Photon Absorption Enhancement for Laser Dyes by Precise Lock-in Detection 4.3.1 Introduction 4.3.2 Theory 4.3.3 Experimental Procedures 4.3.4 Results and Discussion 4.3.5 Conclusion References Section 5 Multi-Color Involved NLO Processes Chapter 5.1 Generation of µJ-Level Multicolored Femtosecond Laser Pulses Using Cascaded Four-Wave Mixing 5.1.1 Introduction 5.1.2 Experimental Setup 5.1.3 Experimental Results and Discussion 5.1.4 Conclusion References Chapter 5.2 Generation and Optimization of Femtosecond Pulses by Four-Wave Mixing (FWM) Process 5.2.1 Introduction 5.2.2 Cascaded FWM in Bulk Media 5.2.2.1 Principle of Cascaded Four-Wave Mixing (FWM) 5.2.2.2 Generation of Wavelength-Tunable Self-Compressed Multicolored Pulses by Nondegenerate Cascaded FWM 5.2.2.3 Pulse Cleaning by Degenerate Cascaded FWM 5.2.3 UV Pulse Generation by FWM in Hollow Fiber 5.2.3.1 Chirped-Pulse FWM in a Gas-Filled Hollow Waveguide 5.2.3.2 Broadband Chirped-Pulse FWM 5.2.3.3 Practical Issues in Broadband Chirped-Pulse FWM 5.2.3.4 Sub-10-fs DUV Pulses Generated by Broadband Chirped-Pulse FWM 5.2.4 FWOPA in Bulk Media 5.2.5 Conclusion and Prospects References Chapter 5.3 Tunable Multicolored Femtosecond Laser Pulses Generation by Using Cascaded Four-Wave Mixing (CFWM) in Bulk Materials 5.3.1 Introduction 5.3.2 Theoretical Analysis 5.3.2.1 FWM Process 5.3.2.2 CFWM Process 5.3.3 Experimental Characteristics of Multicolored Pulses 5.3.3.1 Experimental Setups 5.3.3.2 Spectra and Wavelength Tuning of Multicolored Sidebands 5.3.3.2.1 Tuning the Wavelength of Sidebands by Changing Cross-Angle 5.3.3.2.2 Tuning the Wavelength of Sidebands by Changing Nonlinear Media 5.3.3.3 Temporal Characteristics of Multicolored Pulses 5.3.3.4 Output Power/Energy of Multicolored Pulses 5.3.3.5 Multicolored Sidebands Generated with Low Threshold 5.3.4 2-D Multicolored Sidebands Arrays 5.3.5 Conclusion and Prospects References Chapter 5.4 Mechanism Study of 2-D Laser Array Generation in a YAG Crystal Plate 5.4.1 Introduction 5.4.2 Numerical Simulation Model 5.4.3 Results and Discussion 5.4.4 Conclusion References Section 6 Broadband Ultrashort Pulse Generation Chapter 6.1 Broadband Coherent Anti-Stokes Raman Scattering Light Generation in BBO Crystal by Using Two Crossing Femtosecond Laser Pulses 6.1.1 Introduction 6.1.2 Experimental 6.1.3 Results and Discussion 6.1.4 Conclusion References Chapter 6.2 Generation of Broadband Two-Dimensional Multicolored Arrays in a Sapphire Plate 6.2.1 Experimental 6.2.2 Experimental Setup 6.2.3 Experimental Results and Discussion 6.2.4 Conclusion References Section 7 NLO Materials Chapter 7.1 Sellmeier Dispersion for Phase-Matched Terahertz Generation in ZnGeP[sub(2)] 7.1.1 Introduction 7.1.2 Derivation of the Sellmeier Dispersion 7.1.3 Generation of Terahertz Radiation with a Nd:YAG Laser 7.1.4 Generation of Terahertz Radiation with CO[sub(2)] Lasers 7.1.5 Discussion 7.1.6 Conclusion References Chapter 7.2 Broadband Sum-Frequency Mixing (SFM) in Some Recently Developed Nonlinear Optical Crystals 7.2.1 Introduction 7.2.2 Schematic of the Experimental Arrangement 7.2.3 Theoretical Background of Phase Matching and Broadband SFM 7.2.4 Results and Discussion 7.2.5 Broadly Tunable Conventional SFM in a Thin Crystal 7.2.6 Conclusion References Chapter 7.3 Optimal Te-Doping in GaSe for Nonlinear Applications 7.3.1 Introduction 7.3.2 Crystal Growth and Characterization 7.3.2.1 Growth Technology 7.3.2.2 Optical Properties 7.3.2.3 THz Generation via Optical Rectification 7.3.3 Discussion 7.3.4 Conclusion References Chapter 7.4 Widely Linear and Non-Phase-Matched Optical-to-Terahertz Conversion on GaSe: Te Crystals 7.4.1 Introduction 7.4.2 Experimental 7.4.3 Results and Discussion 7.4.4 Conclusion References Section 8 NLO Processes in Time-Resolved Spectroscopy Chapter 8.1 Elimination of Coherence Spike in Reflection-Type Pump-Probe Measurements 8.1.1 Introduction 8.1.2 Experiments 8.1.3 Results and Discussion 8.1.4 Summary References Chapter 8.2 Vibrational Fine Structures Revealed by the Frequency-to-Time Fourier Transform of the Transient Spectrum in Bacteriorhodopsin 8.2.1 Introduction 8.2.2 Experimental Section 8.2.3 Results and Discussion 8.2.4 Conclusions References Section 9 Low Dimensional (D) Materials Section 9.1 0D Chapter 9.1.1 Superior Local Conductivity in Self-Organized Nanodots on Indium-Tin-Oxide Films Induced by Femtosecond Laser Pulses 9.1.1.1 Introduction 9.1.1.2 Experiments 9.1.1.3 Results and Discussion 9.1.1.4 Conclusion References Chapter 9.1.2 Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals 9.1.2.1 Introduction 9.1.2.2 Experimental 9.1.2.3 Results and Discussion 9.1.2.4 Conclusion Supporting Information References Section 9.2 1D CNT Chapter 9.2.1 Coherent Phonon Generation in Semiconducting Single-Walled Carbon Nanotubes Using a Few-Cycle Pulse Laser 9.2.1.1 Introduction 9.2.1.2 Experimental Details 9.2.1.3 Results and Discussion 9.2.1.3.1 Stationary Absorption Spectrum of the Sample and Laser Spectrum 9.2.1.3.2 Two-Dimensional (2D) Real-Time Spectra and Exact Chirality Assignment 9.2.1.3.3 Probe Photon Energy Dependent Amplitude Profiles 9.2.1.4 Conclusion References Chapter 9.2.2 Electronic Relaxation and Coherent Phonon Dynamics in Semiconducting Single-Walled Carbon Nanotubes with Several Chiralities 9.2.2.1 Introduction 9.2.2.2 Experiment 9.2.2.2.1 Ultrafast Spectroscopy 9.2.2.2.2 Sample Preparation 9.2.2.3 Results and Discussion 9.2.2.3.1 Stationary Absorption Spectrum 9.2.2.3.2 Electronic Relaxation and Thermalization of Excited Population 9.2.2.3.3 FT Spectra and Chirality Assignments 9.2.2.3.4 CP Amplitudes of Chiral Systems 9.2.2.3.5 Raman Processes in a Classical Model 9.2.2.3.6 Raman and Raman-Like Processes in a Semiclassical Model 9.2.2.3.7 Probe Photon Energy Dependence of the Vibrational Amplitudes 9.2.2.3.8 Fitting the Amplitude Spectrum with Contributions from the Real and Imaginary Parts of the Third-Order Susceptibility 9.2.2.3.9 Size and Meaning of the Contribution from the Real Part of the Third-Order Susceptibility 9.2.2.3.10 RBMs Studied by the Moment Calculation 9.2.2.4 Conclusions References Supplemental Material Supporting Information: Sample Morphology Chapter 9.2.3 Coherent Phonon Coupled with Exciton in Semiconducting Single-Walled Carbon Nanotubes Using a Few-Cycle Pulse Laser 9.2.3.1 Introduction 9.2.3.2 Experiment 9.2.3.3 Results and Discussion 9.2.3.3.1 Electronic Relaxation and Thermalization of Excited Population 9.2.3.3.2 Fourier-Transform (FT) Spectra and Chirality Assignments 9.2.3.3.3 Fitting the Amplitude Spectrum with Contributions from the Real and Imaginary Parts of the Third-Order Susceptibility 9.2.3.4 Conclusions Acknowledgments References Chapter 9.2.4 Real-Time Spectroscopy of Single-Walled Carbon Nanotubes for Negative Time Delays by Using a Few-Cycle Pulse Laser 9.2.4.1 Introduction 9.2.4.2 Experimental Method 9.2.4.2.1 Pump–Probe Experiment 9.2.4.2.2 Sample Preparation 9.2.4.3 Results and Discussion 9.2.4.3.1 Stationary Absorption Spectrum 9.2.4.3.2 Two-Dimensional (2D) Real-Time Vibration Spectra 9.2.4.3.3 Electronic Phase Relaxation Time 9.2.4.3.4 Fourier Transform Power Spectra and Probe Photon Energy-Dependent Amplitudes 9.2.4.4 Conclusions References Section 9.3 1D Oligomers and Polymers Chapter 9.3.1 Fluorescence from Molecules and Aggregates in Polycrystalline Thin Films of α-Oligothiophenes 9.3.1.1 Introduction 9.3.1.2 Experiment 9.3.1.3 Results and Discussion 9.3.1.3.1 Absorption and Fluorescence Excitation Spectra 9.3.1.3.2 Fluorescence Spectra 9.3.1.3.3 Site-Selective Fluorescence Spectra 9.3.1.3.4 Assignment of Fluorescence 9.3.1.3.5 Time-Resolved Fluorescence Spectra 9.3.1.4 Summary References Chapter 9.3.2 Sequential Singlet Internal Conversion of IB[sub(–)][sub(u)] → 3A[sub(–)][sub(g)] → IB[sub(–)][sub(u)] → 2A[sub(–)][sub(g)] → (IA[sub(–)][sub(g)] Ground) in All-Trans-Spirilloxanthin Revealed by Two-Dimensional Sub-5-fs Spectroscopy 9.3.2.1 Introduction 9.3.2.2 Experimental 9.3.2.3 Results and Discussion 9.3.2.3.1 Characterization of Femtosecond Time-Resolved Absorption Spectra: Identification of Sequential Internal Conversion 9.3.2.3.1.1 Time-Resolved Absorption Spectra Near Zero Delay Time 9.3.2.3.1.2 Time-Resolved Spectra with Positive Delay Times 9.3.2.3.2 Analysis by SVD and Global-Fitting in the Framework of a Sequential Model 9.3.2.3.3 Comparison with the Previous Results of Subpicosecond Time-Resolved Absorption Spectra References Chapter 9.3.3 Observation of Breather Exciton and Soliton in a Substituted Polythiophene with a Degenerate Ground State 9.3.3.1 Introduction 9.3.3.2 Experimental Descriptions 9.3.3.3 Molecule Structure 9.3.3.4 Quantum-Chemical Methodology 9.3.3.5 Results and Discussion 9.3.3.5.1 Electronic Relaxation and Molecular Vibration Dynamics 9.3.3.5.2 Dynamics of Breather and Soliton 9.3.3.6 Conclusions References Chapter 9.3.4 Ultrafast Electronic Relaxation and Vibrational Dynamics in a Polyacetylene Derivative 9.3.4.1 Introduction 9.3.4.2 Experimental 9.3.4.2.1 Sample 9.3.4.2.2 Ultrafast Spectroscopy 9.3.4.3 Results and Discussion 9.3.4.3.1 Delay Time Dependence of Difference Absorbance and Time-resolved Spectrum 9.3.4.3.2 The Effect of the Electronic Transition Spectrum by Molecular Vibration 9.3.4.3.3 Initial Phases of the Vibrational Modes Coupled to the Electronic Transition via Impulsive Excitation 9.3.4.3.4 Vibrational-Energy Ladder Descending Process and Vibrational Phase Relaxation 9.3.4.3.5 Electronic Phase Relaxation Obtained from the Data in the Negative Time Range 9.3.4.4 Conclusions References Chapter 9.3.5 Ultrabroadband Time-Resolved Spectroscopy of Polymers 9.3.5.1 Effect of Annealing on the Performance of P3HT: PCBM Solar Cells 9.3.5.2 Conclusion and Perspectives References Section 9.4 2D Topological Materials Chapter 9.4.1 Ultrabroadband Time-Resolved Spectroscopy of Topological Insulators 9.4.1.1 Introduction 9.4.1.2 Broadband Time-Resolved Spectroscopy 9.4.1.2.1 Development 9.4.1.2.2 Femtosecond Light Sources 9.4.1.2.2.1 Narrowband Optical Parametric Amplifier 9.4.1.2.2.2 Broadband Optical Parametric Amplifier 9.4.1.2.3 Pump–Probe Spectroscopy 9.4.1.2.3.1 Fast-Scan Techniques 9.4.1.2.3.2 Broadband Detection Techniques 9.4.1.3 Ultrafast Dynamics in Novel Condensed Matter 9.4.1.3.1 Spin-Valley Coupled Polarization in Monolayer MoS2 9.4.1.4 Conclusion and Perspectives References Chapter 9.4.2 Phonon Dynamics in Cu[sub(x)]Bi[sub(2)](x50, 0.1, and 0.125) and Bi[sub(2)]Se[sub(2)] Crystals Studied Using Ultrafast Spectroscopy 9.4.2.1 Introduction 9.4.2.2 Experimental 9.4.2.3 Results and Discussion 9.4.2.4 Conclusion References Chapter 9.4.3 Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS[sub(2)] 9.4.3.1 Introduction References Chapter 9.4.4 Femtosecond Time-Evolution of Mid-Infrared Spectral Line Shapes of Dirac Fermions in Topological Insulators 9.4.4.1 Introduction 9.4.4.2 Experimental 9.4.4.3 Results 9.4.4.3.1 Ultra-Broadband MIR ΔR/R Spectra of FCA and SSTs in Topological Insulators 9.4.4.3.2 Quantitative Analysis of the Ultra-Broadband MIR ΔR/R Spectra 9.4.4.3.2.1 Ultrafast Time-Evolution of the Ultra-Broadband MIR ΔR/R Spectra 9.4.4.4 Discussion References Section 10 Conductors and Superconductors Section 10.1 Super Conductors Chapter 10.1.1 Dichotomy of Photoinduced Quasiparticle on CuO[sub(2)] Planes of YB[sub(2)]Cu[sub(3)]O[sub(7)] Directly Revealed by Femtosecond Polarization Spectroscopy 10.1.1.1 Introduction 10.1.1.2 Experiment 10.1.1.3 Results and Discussion References Chapter 10.1.2 Ultrafast Dynamics and Phonon Softening in Fe[sub(1+y)]Se[sub(1–x)]Te[sub(x)] Single Crystals 10.1.2.1 Introduction 10.1.2.2 Experiments 10.1.2.3 Temperature-Dependent ΔR/R 10.1.2.4 Electron–Optical Phonon Coupling Strength 10.1.2.5 Acoustic Phonon Softening 10.1.2.6 Summary References Chapter 10.1.3 Quasiparticle Dynamics in FeSe Superconductors Studied by Femtosecond Spectroscopy 10.1.3.1 Introduction 10.1.3.2 Experiments 10.1.3.3 Results and Discussion 10.1.3.4 Summary References Section 10.2 THZ, MIR Spectroscopy of Materials Chapter 10.2.1 Dirac Fermions Near the Dirac Point in Topological Insulators 10.2.1.1 Introduction 10.2.1.2 Results and Discussion 10.2.1.3 Conclusion References Chapter 10.2.2 Helicity-Dependent Terahertz Emission Spectroscopy of Topological Insulator 10.2.2.1 Introduction 10.2.2.2 Experiments 10.2.2.3 Results and Discussion 10.2.2.4 Summary and Conclusions Appendix A: Sample Preparation and Terahertz Emission Measurement Appendix B: Time-Domain Fits for the Helicity-Dependent Terahertz Radiation at ϕ = 0° and 90° Appendix C: Dependence of Circular Appendix D: Time-Domain Decomposition and Recombination of the α-Dependent Terahertz Waveforms at ϕ = 90° Appendix E: Estimation of the Terahertz-Emission Spectra for Dirac Fermions by Using Photoemission Dynamics from Time-Resolved ARPES Measurements Appendix F: Helicity-Independent Terahertz Radiation from a <110>ZnTe Single Crystal References Chapter 10.2.3 Femtosecond Time-Evolution of Mid-Infrared Spectral Line Shapes of Dirac Fermions in Topological Insulators 10.2.3.1 Results 10.2.3.2 Discussion 10.2.3.3 Methods References Chapter 10.2.4 Ultrafast Carrier Dynamics in Ge by Ultra-Broadband Mid-Infrared Probe Spectroscopy 10.2.4.1 Experiments 10.2.4.2 Results and Discussion 10.2.4.3 Summary References Section 11 Chemical Reactions and Material Processing Section 11.1 Chemical Reactions Chapter 11.1.1 Transition State in a Prevented Proton Transfer Observed in Real Time 11.1.1.1 Introduction 11.1.1.2 Experimental 11.1.1.3 Results and Discussion 11.1.1.3.1 Investigation of Reaction Mechanisms of Proton Transfer (Theory) 11.1.1.4 Direct Observation of Transition State (Methanol Solution of Indigodisulfonate Salt) 11.1.1.5 Comparison Between Experimental Results and Theoretical Results TD-B3LYP/6-311++G**//B3LYP/6311++G** 11.1.1.6 Conclusion Supporting Information References Chapter 11.1.2 Environment-Dependent Ultrafast Photoisomerization Dynamics in Azo Dye 11.1.2.1 Introduction 11.1.2.2 Experimental Section 11.1.2.3 Results and Discussion 11.1.2.4 Summary References Chapter 11.1.3 Direct Observation of Denitrogenation Process of 2,3-diazabicyclo [2.2.1] hept-2-ene (DBH) Derivatives, Using a Visible 5-fs Pulse Laser 11.1.3.1 Introduction 11.1.3.2 Experimental 11.1.3.3 Results and Discussion 11.1.3.3.1 Pump–Probe Experimental Results 11.1.3.3.2 Spectrogram 11.1.3.3.3 Denitrogenation Mechanism 11.1.3.4 Conclusion References Chapter 11.1.4 Photo-Impulsive Reactions in the Electronic Ground State Without Electronic Excitation: Non-Photo, Non-Thermal Chemical Reactions 11.1.4.1 Introduction 11.1.4.2 Experimental 11.1.4.2.1 Few-Optical-Cycle Ultraviolet Pulses 11.1.4.2.2 Few-Optical-Cycle Visible Pulses 11.1.4.2.3 Sample Cell 11.1.4.2.4 Pump–Probe Measurement 11.1.4.2.5 Quantum Chemical Calculation 11.1.4.3 Results 11.1.4.3.1 Vibrational Dynamics in the Reaction Under Few-Optical Cycle Ultraviolet Pulse Irradiation (See Figure 11.1.4.1a) 11.1.4.3.2 Vibrational Dynamics in the Reaction Under Few-Optical Cycle Visible Pulse Irradiation (See Figure 11.1.4.1c) 11.1.4.3.3 Theoretical Vibrational Dynamics of the Photo- and Thermal Reactions 11.1.4.4 Discussion 11.1.4.4.1 Photochemically-Allowed Claisen Rearrangement of Allyl Phenyl Ether by Few-Optical-Cycle Ultraviolet Pulse Irradiation 11.1.4.4.2 Thermally-Allowed Claisen Rearrangement of Allyl Phenyl Ether by Few-Optical-Cycle Visible Pulse Irradiation 11.1.4.4.3 Non-Photo, Non-Thermal Chemical Reaction 11.1.4.5 Conclusions References Chapter 11.1.5 The Reaction Mechanism of Claisen Rearrangement Obtained by Transition State Spectroscopy and Single Direct-Dynamics Trajectory 11.1.5.1 Introduction 11.1.5.2 Results and Discussions 11.1.5.2.1 Transition State Spectroscopy of the Claisen Rearrangement of Allyl Vinyl Ether 11.1.5.2.2 Single Direct-Dynamics Trajectory 11.1.5.3 Experimental 11.1.5.3.1 Visible 5-fs Laser System 11.1.5.3.2 \"The Reaction in the Electronic Ground State\", Triggered by the Visible 5-fs Pulse 11.1.5.4 Conclusions References Chapter 11.1.6 A New Reaction Mechanism of Claisen Rearrangement Induced by Few-Optical-Cycle Pulses: Demonstration of Nonthermal Chemistry by Femtosecond Vibrational Spectroscopy 11.1.6.1 Introduction 11.1.6.2 Experimental 11.1.6.2.1 Visible Few-Optical-Cycle Pulses 11.1.6.2.2 Ultraviolet Few-Optical-Cycle Pulses 11.1.6.2.3 Sample Cell 11.1.6.2.4 Pump–Probe Measurement 11.1.6.2.5 Theoretical Calculation 11.1.6.3 Results and Discussion 11.1.6.3.1 Claisen Rearrangement of Allyl Vinyl Ether 11.1.6.3.2 Claisen Rearrangement of Allyl Phenyl Ether 11.1.6.3.3 \"Nonphoto Nonthermal Claisen Rearrangement\" and Thermal Claisen Rearrangement 11.1.6.4 Conclusion References Section 11.2 Material Processing Chapter 11.2.1 Magnetization Dynamics and the Mn[sup(3+)] d-d Excitation of Hexagonal HoMnO[sub(3)] Single Crystals Using Wavelength-Tunable Time-Resolved Femtosecond Spectroscopy 11.2.1.1 Introduction 11.2.1.2 Experiments 11.2.1.3 Results and Discussion 11.2.1.4 Summary References Chapter 11.2.2 Ultrafast Thermoelastic Dynamics of HoMnO[sub(3)] Single Crystals Derived from Femtosecond Optical Pump – Probe Spectroscopy 11.2.2.1 Introduction 11.2.2.2 Experiments 11.2.2.3 Results and Discussion 11.2.2.3.1 Temperature- and Wavelength-Dependent ΔR/R 11.2.2.3.2 Attribution of the Negative Component in ΔR/R 11.2.2.3.3 Attribution of the Oscillation Component in ΔR/R 11.2.2.4 Conclusion References Chapter 11.2.3 Ultrafast Photoinduced Mechanical Strain in Epitaxial BiFeO[sub(3)] Thin Films 11.2.3.1 Introduction 11.2.3.2 Experimental 11.2.3.3 Results and Discussion 11.2.3.4 Conclusion References Chapter 11.2.4 Femtosecond Laser-Induced Formation of Wurtzite Phase ZnSe Nanoparticles in Air 11.2.4.1 Introduction 11.2.4.2 Experimental 11.2.4.3 Results and Discussion 11.2.4.4 Conclusion References Chapter 11.2.5 Controllable Subwavelength-Ripple and -Dot Structures on YBa[sub(2)]Cu[sub(3)]O[sub(7)] Induced by Ultrashort Laser Pulses 11.2.5.1 Introduction 11.2.5.2 Experiments 11.2.5.3 Results and Discussion 11.2.5.4 Summary References Section 12 Photobiological Reactions Chapter 12.1 Real-Time Vibrational Dynamics in Chlorophyll a Studied with a Few-Cycle Pulse Laser 12.1.1 Introduction 12.1.2 Materials and Methods 12.1.3 Results and Discussion 12.1.3.1 Stationary Absorption and Fluorescence Spectra and Time-Resolved Difference Absorption Spectrum 12.1.3.2 Ultrafast Dynamics of Vibrational Modes 12.1.4 Theory and Discussion 12.1.5 Conclusions Supporting Material References Chapter 12.2 Time-Resolved Spectroscopy of Ultrafast Photoisomerization of Octopus Rhodopsin Under Photoexcitation 12.2.1 Introduction 12.2.2 Experimental Methods 12.2.2.1 Femtosecond Spectroscopy Apparatus 12.2.2.2 Octopus Rh 12.2.3 Results and Discussion 12.2.3.1 Electronic Dynamics 12.2.3.2 Vibration Dynamics 12.2.4 Conclusions References Chapter 12.3 Schiff Base Proton Acceptor Assists Photoisomerization of Retinal Chromophores in Bacteriorhodopsin 12.3.1 Introduction 12.3.2 Materials and Methods 12.3.2.1 Chemicals Used in This Study 12.3.2.2 Plasmid Constructions 12.3.2.3 Primers Used for Mutant Constructions 12.3.2.4 Protein Purification 12.3.2.5 Flash-Laser-Induced Photocycle Measurement 12.3.2.6 Fast-Scan Transient Absorption Spectroscopy 12.3.2.7 Visible Broadband Sub-10-Fs Pulse 12.3.2.8 Software Employed in This Study 12.3.3 Results and Discussion 12.3.3.1 Sequence Alignment of HwBR and Other BRs 12.3.3.2 Protein Constructions, Expression, Purification, and Ultraviolet-Visible Maximum Absorbance of Wild-Type, D93N, and D104N 12.3.3.3 Ground-State Photocycle of Wild-Type, D93N, and D104N 12.3.3.4 Transient Absorption Spectroscopy of Wild-Type and Mutants of HwBR 12.3.3.5 Global Fitting Using the Triple-Exponential Function 12.3.3.6 Femtosecond 2D-CS 12.3.3.7 Picosecond 2D-CS 12.3.3.8 Transient Absorption Spectroscopy of Wild-Types of HwBR, HmBRI, and HmBRII 12.3.3.9 Global Fitting Using the Triple-Exponential Function 12.3.3.10 Femtosecond 2D-CS 12.3.3.11 Picosecond 2D-CS 12.3.4 Conclusions References