دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2021]
نویسندگان: Ursula Keller
سری:
ISBN (شابک) : 3030825310, 9783030825317
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 820
[810]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 Mb
در صورت تبدیل فایل کتاب Ultrafast Lasers: A Comprehensive Introduction to Fundamental Principles with Practical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب لیزرهای فوق سریع: مقدمه ای جامع بر اصول بنیادی با کاربردهای عملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی مقدمه ای جامع بر فیزیک لیزر فوق سریع با
آگاهی دقیق از نیازهای دانشجویان تحصیلات تکمیلی ارائه می دهد.
این دستگاه مستقل و آماده استفاده برای دوره های لیزر فوق سریع
و پس زمینه برای تحقیقات تجربی در آزمایشگاه است. این کتاب با
مقدمه ای پیشرفته بر انتشار پالس خطی و غیرخطی، جزئیات سوئیچینگ
Q و قفل کردن مدل شروع می شود و ضمن توضیح تولید و اندازه گیری
پالس فوق کوتاه، به جزئیات می پردازد. در نهایت، توصیف سیگنال
های لیزری نشان داده شده است، و طیف وسیعی از کاربردها ارائه
شده است. تعداد زیادی مثال کار شده و مشکلات با راه حل ها به
تعمیق درک خواننده کمک می کند.
This textbook presents a comprehensive introduction to
ultrafast laser physics with a keen awareness of the needs of
graduate students. It is self-contained and ready to use for
both ultrafast laser courses and background for experimental
investigation in the lab. The book starts with an advanced
introduction to linear and nonlinear pulse propagation,
details Q-switching and modelocking and goes into detail
while explaining ultrashort pulse generation and measurement.
Finally, the characterization of the laser signals is
illustrated, and a broad range of applications presented. A
multitude of worked examples and problems with solutions help
to deepen the reader's understanding.
Preface Acknowledgements Contents 1 Plane Wave Propagation in Dispersive Media 1.1 Maxwell's Equations in SI Units 1.2 Material Equations 1.3 Wave Equation with Refractive Index 1.3.1 Derivation of the Wave Equation 1.3.2 Solution of the Wave Equation: Plane Wave 1.3.3 Summary of the Notation in Vacuum and in a Dispersive Medium 1.3.4 TEM Wave and Impedance 1.3.5 Polarization 1.3.6 Energy Density, Poynting Vector, and Intensity 1.4 Dispersion 1.4.1 Dispersion for Electromagnetic Waves 1.4.2 Sellmeier Equation in the Visible and Near-Infrared 1.4.3 Refractive Index from the VUV to the X-Ray Region 2 Linear Pulse Propagation 2.1 Motivation 2.2 Wave Equation in the Spectral Domain: Helmholtz Equation 2.2.1 Fourier Transform 2.2.2 Derivation of the Helmholtz Equation 2.3 Linear Versus Nonlinear Wave Propagation 2.3.1 Superposition Principle 2.3.2 Linear System Theory 2.3.3 Nonlinear Systems 2.4 Ultrafast Pulses 2.4.1 Pulse Wave Packet and Pulse Envelope 2.4.2 Time–Bandwidth Product. Analogy with Heisenberg's Uncertainty Relation 2.4.3 Spectral Phase Yielding Shortest Pulse 2.5 Linear Pulse Propagation in a Dispersive Material 2.5.1 Linear Pulse Propagation Versus Linear Dispersion 2.5.2 Slowly-Varying-Envelope Approximation 2.5.3 First and Second Order Dispersion 2.5.4 Phase Velocity and Group Velocity 2.5.5 Dispersive Pulse Broadening 2.5.6 Dispersion as a Function of Frequency and Wavelength 2.5.7 Optical Communication 2.5.8 Can a Pulse Propagate Faster Than the Speed of Light in Vacuum? 2.5.9 Definition of the Group Index 2.5.10 Higher Order Dispersion 2.5.11 Slowly-Evolving-Wave Approximation 3 Dispersion Compensation 3.1 Introduction and Motivation 3.2 Prism Compressor 3.2.1 Second Order Dispersion of the Four-Prism Compressor 3.2.2 Third Order Dispersion of the Four-Prism Compressor 3.2.3 Continuous Adjustment of Dispersion 3.3 Grating Compressor, Stretcher, and Pulse Shaper 3.3.1 Diffraction Grating Compressor 3.3.2 Turning a Grating Compressor into a Stretcher 3.3.3 Grating-Based Pulse Shaper 3.4 Gires–Tournois Interferometer (GTI) 3.5 Summary of Dispersion Compensation with Angular Dispersion and GTI 3.6 Mirrors with Controlled Phase Properties 3.6.1 Bragg Mirror 3.6.2 Dielectric GTI-Type Mirrors 3.6.3 Chirped Mirrors 3.6.4 Design of Chirped Mirrors 3.7 Dazzlers 3.8 Dispersion Measurements 4 Nonlinear Pulse Propagation 4.1 Self-Phase Modulation (SPM) 4.1.1 Kerr Effect and SPM 4.1.2 Pulse Compressors Such as Fiber-Grating, Fiber-Prism, and Fiber-Chirped-Mirror Compressors 4.1.3 Nonlinear Optical Pulse Cleaner 4.1.4 Average Power Scaling of Pulse Compressors 4.2 Self-Focusing and Filamentation Compressor 4.2.1 Self-Focusing via a Kerr Lens 4.2.2 Filament Formation 4.2.3 Filament Pulse Compression 4.3 Solitons 4.3.1 Discovery of the Soliton 4.3.2 Solution of the NSE: The Fundamental Soliton 4.3.3 Solution of the NSE: Higher-Order Solitons 4.3.4 Optical Communication with Solitons 4.3.5 Periodic Perturbations of Solitons 4.4 Self-Steepening 4.4.1 Higher-Order Nonlinear Effects 4.4.2 Optical Shock Front 4.4.3 Effect of GDD on Optical Shock 4.5 Nonlinear Propagation in a Saturable Absorber or Saturable Amplifier 4.5.1 Saturable Amplifier 4.5.2 Saturable Absorber 4.5.3 Nonlinear Pulse Propagation in a Saturable Absorber or Amplifier 5 Laser Rate Equations, Steady-State Solutions, Relaxation Oscillations, and Transfer Functions 5.1 What Do We Need to Know About Lasers? 5.1.1 Diode-Pumped Solid-State Laser 5.1.2 Rate Equations for an Ideal Four-Level Laser 5.1.3 Steady-State Solutions (Four-Level Laser) 5.1.4 Gain Saturation (Four-Level Laser) 5.1.5 Three-Level Laser 5.2 Relaxation Oscillations in a Four-Level Laser 5.2.1 Linearized Rate Equations 5.2.2 Ansatz for Solution After Perturbation 5.2.3 Over-Critically Damped Lasers 5.2.4 Under-Critically Damped Lasers 5.2.5 Examples of Relaxation Oscillations Using Different Laser Materials 5.2.6 Measurement of the Small-Signal Gain 5.3 Transfer Function Analysis 5.3.1 Rate Equations for Power and Gain 5.3.2 Relaxation Oscillations 5.3.3 Transfer Function 5.3.4 Transfer Function Measurement 7 Saturable Absorbers for Solid-State Lasers 7.1 Introduction 7.2 Slow and Fast Saturable Absorbers 7.2.1 Saturable Absorber Parameters and Rate Equation 7.2.2 Justification for the Simplified Saturable Absorber Rate Equation 7.2.3 Slow Saturable Absorber 7.2.4 Fast Saturable Absorber 7.2.5 Summary of Relevant Equations 7.3 Nonlinear Reflectivity Model Functions 7.3.1 Approximations 7.3.2 Time-Dependent Reflectivity 7.3.3 Pulse-Averaged Reflectivity 7.3.4 Correction for Gaussian Beam Profile 7.3.5 Inverse Saturable Absorption (ISA) 7.3.6 Summary of Relevant Model Functions for Nonlinear Reflectivity 7.4 Semiconductor Saturable Absorbers 7.4.1 Semiconductor Saturable Absorber Materials 7.4.2 Introduction to Semiconductor Relaxation Dynamics 7.4.3 Fast Saturable Absorbers with Carrier Trapping Engineering 7.4.4 Fast Saturable Absorbers with Quantum-Confined Stark Effect 7.4.5 Saturable Absorber Optimization with Quantum Confinement 7.4.6 Derivation of the Density of States 7.5 Semiconductor Saturable Absorber Mirror (SESAM) 7.5.1 SESAM Design: A Historical Perspective 7.5.2 Resonant Versus Antiresonant SESAM 7.5.3 Antiresonant High-Finesse SESAM 7.5.4 Reflectivity, Phase, Dispersion, and Penetration Depth of a DBR 7.5.5 Antiresonant Low-Finesse SESAM 7.5.6 Dispersive SESAM 7.5.7 Ultrabroadband SESAMs 7.5.8 SESAM Optimization with Standing Wave Field Enhancement 7.6 SESAM Damage 7.6.1 SESAM Damage Measurements 7.6.2 SESAM Damage Theory 7.6.3 SESAM Design for High Average Power Thin-Disk Lasers 7.7 SESAM Characterization 7.7.1 One-Beam Measurement of Nonlinear Reflectivity 7.7.2 Pump–Probe Measurement of Recovery Time 7.7.3 Pump–Probe Measurement of Nonlinear Reflectivity 7.8 Novel Saturable Absorber Materials 8 Q-Switching 8.1 Active Q-Switching 8.1.1 Fundamental Principle of Active Q-Switching 8.1.2 Acousto-Optic Q-Switched Diode-Pumped Solid-State Laser 8.1.3 Pulsed Single-Frequency Laser 8.1.4 Actively Q-Switched Microchip Laser 8.2 Theory for Active Q-Switching 8.2.1 Rate Equations 8.2.2 Inversion Build-Up Phase 8.2.3 Pulse Build-Up Phase: Leading Edge of the Pulse 8.2.4 Dynamics During the Pulse Duration 8.2.5 Pulse Depletion Phase: Trailing Edge of the Pulse 8.3 Passive Q-Switching 8.3.1 Fundamental Principle of Passive Q-Switching 8.3.2 Passively Q-Switched Microchip Laser 8.3.3 Passively Q-Switched Monolithic Ring Laser 8.4 Theory for Passive Q-Switching 8.4.1 Rate Equations 8.4.2 Model for SESAM Q-Switched Microchip Laser 8.4.3 Pulse Energy 8.4.4 Pulse Duration and Pulse Shape 8.4.5 Pulse Repetition Rate 8.4.6 Remarks on Three-Level Lasers 8.5 Passively Q-Switched Microchip Lasers Using SESAMs 8.5.1 SESAM Design 8.5.2 Laser Setup 8.5.3 SESAM Q-Switching Results 8.5.4 Design Guidelines 8.5.5 Summary of the Q-Switched Microchip Laser 9 Passive Modelocking 9.1 Introduction and Basic Principle 9.1.1 Basic Principle 9.1.2 Starting Passive Modelocking 9.1.3 Historical Development 9.2 Coupled Cavity Modelocking 9.3 Passive Modelocking with a Slow Saturable Absorber and Dynamic Gain Saturation 9.3.1 Modelocking Conditions 9.3.2 Example: Colliding Pulse Modelocking (CPM) 9.3.3 Pulse Formation through Saturable Absorption and Gain 9.3.4 Master Equation and Solution 9.4 Passive Modelocking with a Fast Saturable Absorber 9.4.1 Definition of an Ideally Fast Saturable Absorber 9.4.2 Example: Kerr Lens Modelocking (KLM) 9.4.3 Master Equation 9.4.4 Solution without SPM and GDD 9.4.5 Comparison with Active Modelocking without SPM and GDD 9.4.6 Solution with SPM and GDD for Soliton Formation 9.4.7 Problem for Self-Starting Modelocking 9.5 Passive Modelocking with Slow Saturable Absorber and Without Dynamic Gain Saturation 9.5.1 Soliton Modelocking 9.5.2 Example: Soliton Modelocked Ti:sapphire Laser 9.5.3 Soliton Modelocking with GDD > 0-.4 and n2 < 0-.4 9.5.4 What Happens Without Soliton Formation 9.6 Summary of Analytical Solutions for all Modelocking Techniques 9.7 Q-Switching Instabilities of Passively Modelocked Solid-State Lasers 9.7.1 Q-Switching Instabilities: A More Serious Issue for Solid-State Lasers 9.7.2 Q-Switching Instabilities Without ISA: Derivation and Discussion of (9.126) 9.7.3 Q-Switching Instabilities with Soliton Modelocking but Without ISA: Derivation and Discussion of (9.127) 9.7.4 Q-Switching Instabilities with ISA: Discussion of (9.129) 9.7.5 Special Cavity Designs to Prevent Q-Switching Instabilities 9.7.6 Negative n2-.4 to Prevent Q-Switching Instabilities 9.8 Passively Modelocked Diode-Pumped Semiconductor Lasers 9.8.1 Optically Pumped VECSELs 9.8.2 Optically-Pumped MIXSELs and SESAM-Modelocked VECSELs 9.9 Dual-Comb Modelocking 9.10 Performance Frontiers in Ultrafast Lasers 9.10.1 Pulse Generation in the Few-Cycle Regime 9.10.2 High Average Power 9.10.3 Gigahertz Pulse Repetition Rates 10 Pulse Duration Measurements 10.1 Electronic Measurements of the Pulse Duration 10.1.1 Cables and Connectors 10.1.2 Fast Photodiode 10.1.3 Estimating the Time Resolution and Measurement Bandwidth 10.1.4 Sampling Oscilloscope 10.1.5 Microwave Spectrum and Signal Analyzers 10.1.6 Equivalent-Time Sampling 10.2 Optical Autocorrelation 10.2.1 Pulse Spectrum 10.2.2 Intensity Autocorrelation 10.2.3 Interferometric Autocorrelation (IAC) 10.2.4 High-Dynamic-Range Autocorrelation 10.2.5 Temporal Smearing in Noncollinear Autocorrelation 10.3 Frequency-Resolved Optical Gating (FROG) 10.3.1 Basic Principle 10.3.2 Second Harmonic Generation FROG (SHG-FROG) 10.4 Spectral Phase Interferometry for Direct Electric Field Reconstruction (SPIDER) 10.4.1 Basic Principle 10.4.2 Experimental Realization 11 Intensity Noise and Timing Jitter of Modelocked Lasers 11.1 Introduction 11.1.1 Definition of Intensity Noise and Timing Jitter 11.1.2 Basic Mathematical Principles for Noise 11.2 Measurement Techniques for Intensity Noise and Timing Jitter 11.2.1 General Remarks on Intensity Noise 11.2.2 General Remarks on Timing Jitter 11.2.3 Measurement Based on Microwave Spectrum Analyzers 11.2.4 Measurement Based on Electronic Reference Signals 11.2.5 Measurement Based on Optical Cross-Correlations 11.2.6 Measurement with an Indirect Phase Comparison Method 11.3 Noise Measurements with Power Spectral Densities 11.3.1 Ideal Laser Without Amplitude Fluctuations and Timing Jitter 11.3.2 Pulse Train with Intensity Noise 11.3.3 Pulse Train with Timing Jitter 11.3.4 Summary of Intensity Noise and Timing Jitter 11.4 Noise Characteristics of Modelocked Lasers 11.4.1 Some Basic Remarks on Noise, Stabilization, and Coupling Mechanisms 11.4.2 Ultrafast Dye Lasers 11.4.3 Flashlamp-Pumped Solid-State Lasers 11.4.4 Diode-Pumped SESAM-Modelocked Solid-State Lasers 11.4.5 Argon-Ion Versus Diode-Pumped Ti:Sapphire Lasers 11.5 Some Words of Caution About Noise Characterization 11.5.1 General Remarks About Nonstationary Processes and Finite Measurement Durations 11.5.2 Noise Measurements in the Frequency Domain 11.5.3 Noise Measurements in the Time Domain 11.6 Signal-to-Noise Ratio (SNR) Optimization Techniques 11.6.1 Basic Principle of Pump–Probe Measurements 11.6.2 High Frequency Chopping with Lock-in Detection 11.6.3 Minimal Detectable Signal for Shot-Noise-Limited Detection 11.6.4 Short Measurement Durations for Lower SNR 12 Optical Frequency Comb from Modelocked Lasers 12.1 Introduction 12.2 Carrier Envelope Offset (CEO) Phase and Frequency 12.3 Measurement of the CEO Frequency 12.3.1 Basic Principle with Heterodyne (Interference) Signals 12.3.2 Method 1 : f-to-2f Interferometer 12.3.3 Method 2: Frequency-Doubled Transfer Oscillator with Lower Bandwidth Requirement 12.3.4 Method 3: Frequency-Tripled Transfer Oscillator 12.3.5 Method 4: SHG and THG of Two Auxiliary Oscillators and Self-Referenced 2f-to-3f Interferometer 12.3.6 Method 5: Frequency Interval Bisection 12.4 Phase and Frequency Noise 12.4.1 Spectrally Resolved CEO Frequency Noise 12.4.2 Basic Mathematical Principle of Phase and Frequency Noise 12.4.3 Integrated Phase and Frequency Noise 12.4.4 Phase Noise from Cavity Mirror Vibrations 12.4.5 Intensity Noise, Timing Jitter, and CEO Frequency Noise 12.4.6 Phase-Time and Fractional (or Relative) Frequency Noise 12.4.7 Polynomial Model: White, 1/f (Flicker), and 1/f2 Noise 12.4.8 Allan Variance 12.5 Connection Between the Optical Laser Spectrum and the Phase Noise 12.5.1 Optical Laser Spectrum 12.5.2 Variance of the Phase Noise Change and Optical Autocorrelation 12.5.3 Optical Spectral Linewidth from Frequency and Phase Noise 12.5.4 Optical Linewidth for (Low-Pass Filtered) White Frequency Noise 12.5.5 β-Separation Line 12.5.6 Optical Linewidth from Flicker Noise 12.5.7 Quantum Noise Limit 12.5.8 Optical Interferometers, Coherence, and Phase Noise 12.6 Stabilized Optical Frequency Combs 12.6.1 Basic Principle of Active Stabilization 12.6.2 CEO Frequency Stabilization with Laser Feedback Control 12.6.3 Full Optical Frequency Comb Stabilization 12.6.4 External CEO Frequency Stabilization 12.7 Laser Technology for Optical Frequency Combs A Fourier Transform B Dispersion for Quantum Mechanical Particles C Delta-Function D Delta-Comb E Soliton Algebra F Linearized Operators for the Master Equation References Index