دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Jemin Lee (editor), Tony Q. S. Quek (editor), Chih-Lin I (editor) سری: ISBN (شابک) : 9781108497930, 2019060106 ناشر: Cambridge University Press سال نشر: 2020 تعداد صفحات: 336 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Ultra-dense Networks: Principles and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبکه های فوق متراکم: اصول و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با این نظرسنجی معتبر، اصول نظری، فناوریهای کلیدی و کاربردهای UDN را درک کنید. تئوری به روشی واضح و گام به گام توضیح داده شده است و پیشرفتهای اخیر و چالشهای تحقیقاتی باز در طراحی لایه فیزیکی UDN، تخصیص منابع و مدیریت شبکه، با مثالهایی در زمینه استانداردسازی B5G و 6G توضیح داده شده است. موضوعات تحت پوشش شامل طراحی لایه فیزیکی مبتنی بر NOMA، امنیت لایه فیزیکی است. مدیریت تداخل، استقرار ایستگاه پایه سه بعدی، UDN های تعریف شده نرم افزاری، حافظه پنهان لبه های بی سیم در UDN ها، پهپادهای مبتنی بر UDN و آزمایش ها و آزمایش های میدانی. یک منبع عالی برای دانشجویان فارغ التحصیل، محققان و متخصصانی که نیاز به سرعت بخشیدن به وضعیت هنر و فرصت های آینده در UDN دارند.
Understand the theoretical principles, key technologies and applications of UDNs with this authoritative survey. Theory is explained in a clear, step-by-step manner, and recent advances and open research challenges in UDN physical layer design, resource allocation and network management are described, with examples, in the context of B5G and 6G standardization. Topics covered include NOMA-based physical layer design, physical layer security. Interference management, 3D base station deployment, software defined UDNs, wireless edge caching in UDNs, UDN-based UAVs and field trials and tests. A perfect resource for graduate students, researchers and professionals who need to get up to speed on the state of the art and future opportunities in UDNs.
Cover Half-title Title page Copyright information Contents List of Contributors Part I Overview 1 Ultra-dense Networks and Sliced Network Services 1.1 Introduction 1.1.1 5G Network Slicing 1.2 Cloud Computational Platforms and Networking 1.3 Orchestrators and 5GC 1.3.1 Boarding Virtual Network Functions 1.3.2 Orchestrator Layers 1.4 SDN and Overlaid Networks 1.5 Monitoring Service and Platform 1.5.1 Telemetry Services 1.5.2 Application Deployment Options 1.6 Conclusions References 2 Ultra-dense Cloud Radio Access Network Architecture 2.1 Introduction 2.2 B5G Ultra-dense Cloud Radio Access Network Architecture 2.3 Fronthauling via mmWave in a UDCRAN with Phantom Cells 2.4 Fronthauling via Unlicensed Spectrum 2.5 Fronthauling via Terrestrial FSO 2.6 Fronthauling via UAV-Mounted FSO 2.7 Comparison and Research Issues in B5G UDCRAN 2.8 Conclusion References Part II Physical Layer Design 3 NOMA-Based Ultra-dense Networks 3.1 Introduction 3.2 Overview of NOMA-Enabled HUDNs 3.2.1 HUDNs 3.2.2 NOMA 3.2.3 Understanding NOMA in HUDNs 3.3 A Unified NOMA Framework for HUDNs 3.3.1 Overview 3.3.2 Uplink and Downlink Communications 3.3.3 User Association 3.3.4 Resource Sharing 3.4 Case Studies for NOMA-Enabled HUDNs 3.4.1 User Association in NOMA-Enabled HUDNs 3.4.2 Resource Sharing in NOMA-Enabled HUDNs 3.5 Research Challenges in NOMA-Enabled HUDNs 3.6 Conclusions References 4 Physical Layer Security in Ultra-dense Networks 4.1 Introduction 4.2 Key Features in Ultra-dense Networks 4.3 Ultra-dense Network and Physical Layer Security Are a Good Match 4.4 Physical Layer Security for Safeguarding IoT and V2X Transmissions 4.5 Physical Layer Security for Safeguarding Edge Computing Service 4.6 Physical Layer Security for Safeguarding Edge Caching Service 4.7 Summary References 5 Millimeter-Wave Multiantenna Ultra-dense Networks 5.1 Introduction for Ultra-dense Networks in Millimeter-Wave Frequencies Band 5.1.1 Next-Generation Network – UDN 5.1.2 Millimeter-Wave Networks 5.1.3 MmWave Antenna Pattern 5.2 Approach and Contributions 5.3 System Description 5.4 Secrecy Evaluation 5.4.1 Simplified LoS mmWave Model 5.4.2 Uniform Linear Array 5.5 Numerical Results and Discussions 5.5.1 Average Achievable Secrecy Rate with UPA 5.5.2 Average Achievable Secrecy Rate with ULA 5.6 Conclusion References 6 Interference Management in Ultra-dense Networks 6.1 Introduction 6.2 Features of Interference in UDNs 6.2.1 Reduced Difference of Interference Levels 6.2.2 Hard-Estimated Interference 6.2.3 Interference Correlation 6.3 A Brief Overview of Interference Management Techniques 6.3.1 Interference Avoidance 6.3.2 Interference Cancellation 6.3.3 Interference Coordination 6.4 Implementation of Interference Management in UDNs 6.4.1 Interference Management Entity for UDNs 6.5 Efficient Interference Management Strategy in UDNs 6.5.1 Implementation Detail 6.5.2 Performance Evaluation 6.6 Open Issues of Interference Management 6.6.1 Interference Management in mmWave Systems 6.6.2 Interference Management in NOMA Systems 6.6.3 Self-Organizing Interference Management 6.7 Concluding Remarks References 7 3D-Based Base Station Deployment in Ultra-dense Networks 7.1 Introduction 7.2 Multilayer UDN Model 7.2.1 Network Description 7.2.2 Base Station Association Rule 7.3 Performance Analysis 7.3.1 Network Interference 7.3.2 Coverage Probability 7.3.3 Area-Spectral Efficiency 7.4 Numerical Results and Discussions 7.4.1 Performance of the Single-Layer UDN 7.4.2 Performance of the Multilayer UDN 7.5 Conclusions References 8 Power Control in Full-duplex Ultra-dense Heterogeneous Networks 8.1 Introduction 8.2 System Model 8.2.1 Problem Formulation 8.3 Simulation and Discussion 8.4 Conclusion References Part III Resource Allocation and Network Management 9 Delay and Traffic Matching in Ultra-dense Networks 9.1 System Model for Spatiotemporal Traffic 9.1.1 Models Based on Stochastic Geometry and Queueing Theory 9.1.2 Transmission Model 9.1.3 Bounding Approaches 9.2 Delay Analysis in Ultra-dense Networks 9.2.1 Challenges of Delay Analysis in UDNs 9.2.2 Promising Approaches 9.3 Traffic Matching in Ultra-dense Networks 9.3.1 Need for Matching the Traffic in UDNs 9.3.2 Useful Approaches to Match Traffic 9.3.3 Handle Spatiotemporal Traffic in UDNs References 10 Traffic Offloading in Software Defined Ultra-dense Networks 10.1 Introduction 10.2 Architecture of Software-Defined Wireless Networks 10.3 Contract Formulation for Traffic Offloading 10.3.1 Transmission Model Formulation 10.3.2 Economic Model Formulation 10.4 Contract Design for Traffic Offloading 10.4.1 Contract Design with Information Asymmetry 10.4.2 Contract Design without Information Asymmetry 10.4.3 Contract Design by Linear Pricing 10.5 Conditions for Contract Feasibility 10.6 Simulation Results 10.7 Conclusion 10.8 Proof of Lemma 10.1 10.9 Proof of Lemma 10.2 References 11 Resource Allocation in Ultra-dense Networks 11.1 Motivation and Scopes 11.2 System Model 11.3 Problem Formulation 11.4 Overlapped UC Clustering 11.5 Resource Allocation Solution 11.5.1 Solution Portrayal 11.5.2 Solution Analysis 11.6 Numerical Simulations 11.6.1 The Performance versus the Network Density 11.6.2 The Performance versus the Number of RBs 11.7 Conclusions References 12 Wireless Edge Caching in Ultra-dense Networks 12.1 Introduction 12.2 Caching at the Transmitter Side 12.2.1 Deterministic Caching 12.2.2 Random Caching 12.2.3 Coded Caching 12.3 Caching at the Receiver Side 12.3.1 Caching for Transmit Load Reduction: Coded Multicast 12.3.2 Caching for Playback Delay Reduction in Video Streaming Services References 13 User Association in Ultra-dense Networks 13.1 Introduction 13.2 System Model and Problem Formulation 13.2.1 System Model 13.2.2 Problem Formulation 13.3 Lagrangian Dual Decomposition 13.3.1 Dual Decomposition 13.3.2 Energy Efficiency and Power Allocation 13.3.3 Iterative Gradient Algorithm 13.3.4 Complexity Analysis 13.4 Simulation Results and Discussion 13.5 Conclusion References 14 UAV-Based Ultra-dense Networks 14.1 Channel Modeling 14.1.1 Air-to-Ground Channel 14.1.2 Cellular BS-to-UAV Channel 14.2 UAV-Enabled Base Stations 14.2.1 Static Deployment 14.2.2 Dynamic Trajectory Planning 14.3 UAV-Enabled Relays 14.4 UAV-Enabled Energy Transfer 14.4.1 Static Time Scheduling 14.4.2 Dynamic Trajectory Planning 14.5 Robust Spectrum Sharing with Terrestrial Networks 14.6 Summary References 15 Generalized Low-Rank Optimization for Ultra-dense Fog-RANs 15.1 Introduction 15.1.1 Fog-RANs 15.1.2 Generalized Low-Rank Models 15.1.3 Low-Rank Optimization Algorithms 15.1.4 Outline 15.2 Generalized Low-Rank Models in Ultra-dense Fog-RANs 15.2.1 A Generalized Low-Rank Framework 15.2.2 Low-Rank Optimization Examples in Fog-RANs 15.3 The Power of Nonconvex Paradigms for Ultra-dense Fog-RANs 15.3.1 Low-Rank Optimization via Nonconvex Factorization 15.3.2 The Framework of Riemannian Optimization 15.3.3 Practical Implementation 15.4 Matrix Optimization on Quotient Manifold 15.4.1 Problem Structures for Fixed-Rank Matrices 15.4.2 Matrix Representation for the Quotient Manifolds 15.4.3 Riemannian Optimization Algorithms 15.4.4 Convergence and Computational Complexity 15.5 Numerical Results 15.6 Summary and Discussion References Part IV Field Trials and Tests 16 Field Trials and Tests on Ultra-dense Networks 16.1 UDN Prototype Test 16.2 C-RAN-Based UDN Network Trial 16.2.1 Test Results and Analysis 16.3 Conclusion References Index