دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: علم شیمی ویرایش: 2 نویسندگان: Steven M. Kurtz Ph.D. سری: ISBN (شابک) : 012374721X, 9780123747211 ناشر: Academic Press سال نشر: 2009 تعداد صفحات: 533 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 27 مگابایت
کلمات کلیدی مربوط به کتاب دفترچه راهنمای زیست مواد UHMWPE (پلی اتیلن با وزن مولکولی فوق العاده بالا در کل مشترک): شیمی و صنایع شیمیایی، ترکیبات درشت مولکولی، هندبوک، کاتالوگ، جداول، هندبوک، کاتالوگ، جداول
در صورت تبدیل فایل کتاب UHMWPE Biomaterials Handbook (Ultra High Molecular Weight Polyethylene in Total Joint ) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دفترچه راهنمای زیست مواد UHMWPE (پلی اتیلن با وزن مولکولی فوق العاده بالا در کل مشترک) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب علم، توسعه، خواص و کاربرد پلی اتیلن با وزن مولکولی فوق العاده بالا (UHMWPE) مورد استفاده در مفاصل مصنوعی را شرح می دهد. این ماده در حال حاضر هر ساله در 1.4 میلیون بیمار در سراسر جهان برای استفاده در لگن، زانو، اندام فوقانی و ستون فقرات استفاده می شود. از زمان انتشار نسخه اول، پیشرفت های عمده ای در توسعه و پذیرش بالینی UHMWPE بسیار متقابل برای تعویض مفصل ران و زانو صورت گرفته است. همچنین یک تلاش بین المللی بزرگ برای معرفی UHMWPE پایدار شده با ویتامین E برای بیماران صورت گرفته است. دانش انباشته شده در مورد این دو دسته از مواد یکی از ویژگی های کلیدی ویرایش دوم است، همراه با 19 فصل اضافی که جنبه های مهندسی کلیدی (بیومکانیکی و علم مواد) و عملکرد بالینی/بیولوژیکی UHMWPE را پوشش می دهد و یک تصویر کامل تر را ارائه می کند. مرجعی برای متخصصان مواد صنعتی و دانشگاهی، و برای جراحان و پزشکانی که برای کار موفقیتآمیز بر روی برنامههای کاربردی بیمار به درک خواص بیومتریال UHMWPE نیاز دارند. * راهنمای UHMWPE مرجع جامعی برای متخصصان، محققان و پزشکانی است که با فناوریهای بیومواد برای جایگزینی مفصل کار میکنند. UHMWPE بسیار متقابل برای تعویض مفصل ران و زانو. ویتامین E تثبیت شده UHMWPE برای بیماران. عملکرد بالینی، تریبولوژی و تعامل بیولوژیکی UHMWPE * پوشش پیشرفته فناوری UHMWPE، کاربردهای ارتوپدی، خصوصیات زیست مواد و جنبه های مهندسی از رهبران شناخته شده در این زمینه
This book describes the science, development, properties and application of of ultra-high molecular weight polyethylene (UHMWPE) used in artificial joints. This material is currently used in 1.4 million patients around the world every year for use in the hip, knee, upper extremities, and spine. Since the publication of the 1st edition there have been major advances in the development and clinical adoption of highly crosslinked UHMWPE for hip and knee replacement. There has also been a major international effort to introduce Vitamin E stabilized UHMWPE for patients. The accumulated knowledge on these two classes of materials are a key feature of the 2nd edition, along with an additional 19 additional chapters providing coverage of the key engineering aspects (biomechanical and materials science) and clinical/biological performance of UHMWPE, providing a more complete reference for industrial and academic materials specialists, and for surgeons and clinicians who require an understanding of the biomaterials properties of UHMWPE to work successfully on patient applications. * The UHMWPE Handbook is the comprehensive reference for professionals, researchers, and clinicians working with biomaterials technologies for joint replacement * New to this edition: 19 new chapters keep readers up to date with this fast moving topic, including a new section on UHMWPE biomaterials; highly crosslinked UHMWPE for hip and knee replacement; Vitamin E stabilized UHMWPE for patients; clinical performance, tribology an biologic interaction of UHMWPE * State-of-the-art coverage of UHMWPE technology, orthopedic applications, biomaterial characterisation and engineering aspects from recognised leaders in the field
Cover Page ......Page 1
Copyright Page......Page 2
Dedication......Page 3
Foreword......Page 4
Contributors......Page 6
Introduction......Page 7
What is Polyethylene?......Page 8
Thermal Transitions......Page 10
Overview of the Handbook......Page 11
References......Page 12
Introduction......Page 13
Polymerization: From Ethylene Gas to UHMWPE Powder......Page 14
GUR Resins......Page 15
GUR Versus 1900 Resin......Page 16
Calcium Stearate......Page 17
Conversion: From Uhmwpe Powder to Consolidated Form......Page 18
Compression Molding of UHMWPE......Page 19
Direct Compression Molding of UHMWPE......Page 20
Properties of Extruded versus Molded UHMWPE......Page 22
Machining: From Consolidated Form to Implant......Page 23
References......Page 24
Introduction......Page 26
Gamma Sterilization in Air......Page 27
Gamma Sterilization in Barrier Packaging......Page 28
Ethylene Oxide Gas Sterilization......Page 30
The Torino Survey of Contemporary Orthopedic Packaging......Page 31
Shelf Life of UHMWPE Components for TJR......Page 33
References......Page 34
Introduction and Timeline......Page 36
The Origins of a Gold Standard (1958 to 1982)......Page 37
Interim Hip Arthroplasty Designs with PTFE (1958 to 1960)......Page 38
Final Hip Arthroplasty Design with PTFE (1960 to 1962)......Page 39
Implant Fabrication at Wrightington......Page 40
The First Wear Tester......Page 41
Searching to Replace PTFE......Page 42
Implant Sterilization Procedures at Wrightington......Page 43
Acknowledgments......Page 45
References......Page 46
Introduction......Page 47
Joint Replacements do not Last Forever......Page 48
Range of Clinical Wear Performance in Cemented Acetabular Components......Page 49
Wear Versus Wear Rate of Hip Replacements......Page 50
Comparing Wear Rates between Different Clinical Studies......Page 51
Current Methods for Measuring Clinical Wear in THA......Page 53
Conclusion......Page 55
References......Page 56
Introduction......Page 58
Metal-on-Metal Hip Bearings......Page 60
Historical Overview of Metal-on-Metal......Page 61
Contemporary (Second Generation) Metal-on-Metal Hip Designs......Page 62
Metal-on-Metal Hip Resurfacing......Page 63
Ceramics in Hip Arthroplasty......Page 64
Ceramic Biomaterials for Hip Arthroplasty......Page 65
Alumina......Page 66
Zirconia-Toughened Alumina Matrix Composite......Page 67
Silicon Nitride......Page 68
Ceramic-on-UHMWPE......Page 69
Contemporary Ceramic-on-Ceramic Hip Implants......Page 71
Wear Mechanisms in Ceramic Bearings......Page 72
In Vivo Fracture Risk of Ceramic Components for THA......Page 73
First-Generation Highly Crosslinked UHMWPE......Page 75
Summary......Page 77
References......Page 78
Introduction......Page 83
Frank Gunston and the Wrightington Connection to TKA......Page 85
Polycentric Knee Arthroplasty......Page 87
Unicondylar Polycentric Knee Arthroplasty......Page 88
Cruciate Sparing Bicondylar Prostheses......Page 89
The Total Condylar Knee......Page 91
Patello-Femoral Arthroplasty......Page 93
UHMWPE with Metal Backing......Page 94
Mobile Bearing TKA......Page 95
References......Page 96
Introduction......Page 98
Knee Joint Loading......Page 99
Stresses in UHMWPE Tibial and Patellar Components for TKR......Page 101
Survivorship of Knee Arthroplasty......Page 103
Reasons for Knee Arthroplasty Revision Surgery......Page 104
Articulating Surface Damage Modes......Page 106
Incidence and Significance of Osteolysis in TKA......Page 108
Methods to Assess In Vivo Wear in TKA......Page 109
Damage to Posts in PS Tibial Components......Page 113
Ceramic Bearings in TKA......Page 114
Acknowledgments......Page 115
References......Page 116
The Shoulder Joint......Page 118
Procedures......Page 119
Patient Population......Page 120
History......Page 121
Biomechanics of Total Shoulder Replacement......Page 122
Contemporary Total Shoulder Replacements......Page 123
Overall Clinical Success Rates......Page 127
Loosening......Page 128
Wear......Page 129
Controversies in Shoulder Replacement......Page 131
Materials......Page 132
References......Page 133
Oosteoarticular Anatomy......Page 137
Muscular Anatomy......Page 139
Historical Context......Page 141
Contemporary Designs......Page 142
Coonrad-Morrey Total Elbow Arthroplasty (Zimmer, Warsaw, Indiana, USA)......Page 143
Acclaim Total Elbow (DePuy, Warsaw, Indiana, USA)......Page 144
Discovery Elbow System (Biomet, Warsaw, Indiana, USA)......Page 146
Kudo Elbow System (Biomet, Warsaw, Indiana, USA)......Page 147
UNI-Elbow and rHead (Small Bone Innovations, Morrisville, Pennsylvania, USA)......Page 148
Osoteolysis and Wear......Page 149
References......Page 151
Introduction......Page 153
Ankle Biomechanics......Page 154
Early Designs......Page 156
Contemporary Designs......Page 158
Agility Total Ankle Prosthesis......Page 159
Scandinavian Total Ankle Replacement......Page 161
Salto Talaris™ and Salto™......Page 162
HINTEGRA......Page 163
BOX......Page 164
UHMWPE Loading and Wear in total Ankle Replacements......Page 165
Complications and Retrieval Analysis......Page 166
References......Page 167
Introduction......Page 170
The Charité Artificial Disc......Page 171
SB CHARITÉ III......Page 172
Bioengineering Studies of the CHARITÉ......Page 174
The Legacy of the CHARITÉ Artificial Disc......Page 176
Lumbar Disc Arthroplasty......Page 177
ProDisc-L......Page 179
Mobidisc......Page 182
Cervical Disc Arthroplasty......Page 183
PCM......Page 185
Wear and in vivo Degradation of UHMWPE in the Spine......Page 187
Alternatives to UHMWPE in Disc Replacement......Page 190
Many Unanswered Questions Remain......Page 191
References......Page 192
Introduction ......Page 195
Irradiation and Melting......Page 196
Effect of Radiation Dose, Melting, and Irradiation Temperature on UHMWPE Properties......Page 197
Effect of Crosslinking on Fatigue Resistance......Page 198
Knee Simulator Data ......Page 199
In Vivo Changes: Explants ......Page 200
References ......Page 201
Development of Duration Stabilized UHMWPE......Page 203
Properties of Duration Stabilized UHMWPE......Page 204
Crossfire......Page 205
Properties......Page 206
Clinical Studies......Page 207
Crossfire Retrievals......Page 208
Sequential Crosslinking Process......Page 210
X3 Properties......Page 211
X3 Summary......Page 214
References......Page 215
Introduction......Page 218
Function of Vitamin E......Page 219
Diffusion of Vitamin E in Crosslinked UHMWPE......Page 220
Hip......Page 221
Mechanical and Fatigue Properties......Page 223
Adverse Conditions......Page 224
Oxidative Stability......Page 225
Biocompatibility......Page 226
Vitamin E toxicity in Clinical Studies with Large Cohorts and Comorbidities......Page 227
Plasma and Tissue Levels of Vitamin E in Healthy Adults with and without Vitamin E Supplementation......Page 228
Animal Studies to Determine the Local Effects of Vitamin E in the Joint Space......Page 229
References......Page 230
Introduction......Page 234
Vitamin E as an Antioxidant for Polyolefins......Page 235
Vitamin E Blends in Food Packaging......Page 236
Vitasul and Vitamin E Studies from Austria......Page 237
Vitamin E Studies from Italy......Page 239
Vitamin E Blends and Thresholds for Oxidative Stability......Page 240
Vitamin E Blends and Mechanical Behavior......Page 241
Acknowledgments......Page 242
References......Page 243
Introduction......Page 245
CFR UHMWPE Composite: Poly II......Page 246
UHMWPE Homocomposites......Page 248
UHMWPE Matrix Composites for Orthopedic Bearings......Page 250
UHMWPE Fibers......Page 251
Acknowledgments......Page 252
References......Page 253
Introduction......Page 255
Polyurethanes and Hydrogels......Page 256
Hyaluronan......Page 257
UHMWPE/HA......Page 259
Crosslinked UHMWPE/HA......Page 261
UHMWPE/HA Composition......Page 262
UHMWPE/HA Hydrophilicity......Page 263
UHMWPE Crystallinity inUHMWPE/HA......Page 264
Tensile Properties......Page 265
Wear Resistance......Page 266
Sterilization of UHMWPE/HA Biomaterials......Page 268
Acknowledgments......Page 269
References......Page 270
Introduction......Page 273
Extended Chain Crystallization......Page 274
Phase Diagram for PE......Page 276
Hylamer......Page 277
In Vitro Studies of Hylamer......Page 278
Clinical Studies of Hylamer in Hip Arthroplasty......Page 279
Clinical Studies of Hylamer in the Knee......Page 280
Crosslinking Followed by High-Pressure Crystallization......Page 281
References......Page 282
Introduction......Page 286
Development History and Overview......Page 287
Arcom XL Polyethylene......Page 288
Properties and In Vitro Performance......Page 289
Development History and Overview......Page 290
E-poly HXLPE......Page 292
Development History and Overview......Page 293
Marathon......Page 295
Development History and Overview......Page 296
Prolong......Page 297
Properties and In Vitro Performance......Page 298
Clinical Results......Page 299
XLPE......Page 300
References......Page 301
Introduction......Page 304
Mechanism of Macroradical Formation During Irradiation......Page 305
Y-Crosslinking Mechanism......Page 306
Introduction......Page 307
UHMWPE Post-irradiation Oxidation......Page 308
Ketone (R2CO)......Page 309
Considerations on Accelerated Aging Methods: Comparison between Post-Irradiation Oxidation and Thermal Oxidation......Page 310
Distribution of Oxidized Compounds in the New UHMWPE Prosthetic Components......Page 311
Postoxidative Degradation after Implant Manufacture......Page 312
Introduction......Page 313
Chemical Mechanisms of Vitamin E Stabilization......Page 314
Chemical Properties of Wear Debris......Page 315
References......Page 316
Introduction ......Page 319
Perspective of In Vivo Oxidation in the 1980S to the Present......Page 320
Institutional Procedures and Study Design......Page 322
Experimental Techniques ......Page 323
In Vivo Oxidation and Total Hip Arthroplasty......Page 325
In Vivo Oxidation and Total Knee Arthroplasty......Page 327
Laboratory Simulation of In Vivo Oxidation......Page 330
Acknowledgments ......Page 332
References ......Page 333
Introduction......Page 335
Immune System......Page 336
Immunologic Responses to Joint Replacement UHMWPE Wear Debris......Page 337
In Vitro and In Vivo Models used to Study the Immune Response to UHMWPE Wear Debris......Page 340
Inflammatory- and Noninflammatory-Based Histomorphologic Changes in Periprosthetic Tissues......Page 341
Current Considerations Based on More Recent Findings and Approaches to Tissue Analysis......Page 342
Comparative Pathophysiologic Changes in Periprosthetic Hip Tissues from Historical and Highly Crosslinked UHMWPE Implant Retrievals......Page 343
Refereneces......Page 344
What does the FDA Require?......Page 348
Differential Scanning Calorimetry......Page 349
Scanning Electron Microscopy......Page 351
Intrinsic Viscosity......Page 352
Fusion Assessment......Page 353
Trace Element Analysis......Page 354
Fourier Transform Infrared Spectroscopy......Page 355
Electron Spin Resonance......Page 356
Swell Ratio Testing......Page 357
Tensile Testing......Page 358
Creep......Page 359
References......Page 360
Biomechanical Factors......Page 362
Biological Factors......Page 364
Biomaterial Factors......Page 365
OBM Developments......Page 367
Summary......Page 368
References......Page 369
Introduction......Page 373
Pin-on-Disc Testing of UHMWPE Destined for Knee Replacements......Page 374
Degrees of Freedom and a Suitable Joint Coordinate System......Page 376
Brief History of Knee Wear Simulators......Page 378
Contemporary Knee Wear Simulators and the Much-Debated Force- versus Displacement-Control Paradigms......Page 380
Force-Control TKR Simulation for UHMWPE Wear Testing......Page 382
Soft Tissue Simulation in the Force-Control Test Method......Page 383
TKR Kinematics Measured from the Force-Control Wear Testing Method......Page 387
Standardization of the Displacement-Control TKR Simulation Method for Wear Testing......Page 389
Variable Control......Page 390
Number of TKR/UHMWPE Samples to Test......Page 392
Soaking UHMWPE Prior to Testing and Soak Controls during Testing......Page 393
Symmetry of Applied Inputs and Simulator Tuning......Page 394
Choice of Lubricant in Testing UHMWPE Wear in Knee Replacements......Page 396
References......Page 398
Rationale for Wear Particle Isolation......Page 401
Acid Digestion of Periprosthetic Tissues and Simulator Lubricants......Page 402
Polarized Light Microscopy of Tissue Samples......Page 403
Image Analysis of UHMWPE Wear Particles......Page 404
Standards......Page 405
Particle Measurements (size/shape Descriptors)......Page 406
Predicting Functional Biological Activity......Page 407
Knee Simulator......Page 408
Wear Particles......Page 409
Discussion......Page 411
References......Page 412
Introduction......Page 415
Radiostereometric Analysis......Page 416
Hip Analysis Suite......Page 418
PolyWare......Page 420
Other Factors to Consider......Page 421
References......Page 422
Introduction......Page 425
Basic Principle of ESR......Page 426
Allyl Radical......Page 428
Peroxy Radical......Page 429
ESR Evidence of the Peroxy Radical in UHMWPE......Page 431
ESR Evidence of the Long-Lived Radicals in UHMWPE......Page 432
Identification of the Oxygen-Induced Radicals by ESR......Page 434
Intermediate Radicals......Page 437
ESR of Vitamin E-Doped UHMWPE......Page 438
Quantitative ESR in UHMWPE......Page 440
References......Page 441
Introduction......Page 443
Fatigue Analysis: Total Life Approach......Page 444
Linear Elastic Fracture Mechanics......Page 445
Fundamentals of Fatigue Crack Propagation......Page 446
Viscoelastic Crack Propagation Models and Predictions of FCP Phenomena......Page 447
Static Mode Fatigue Crack Propagation in UHMWPE......Page 448
Kmax Dominated Fatigue Crack Propagation in UHMWPE......Page 450
Structural Fatigue Resistance Approach......Page 451
Izod and Charpy Impact Tests......Page 452
Elastic–Plastic Fracture Mechanics and the J-integral Concept......Page 453
Multi-specimen versus Single-Specimen Methods......Page 455
J-integral and the Single Specimen Normalization Method......Page 457
J-integral Based Methods Developed for Polymers......Page 458
J-integral Fracture Toughness of UHMWPE......Page 459
References......Page 461
Overview of Notch Behavior......Page 465
Mechanical Characterization of Notch Effects......Page 468
Material Characterization and Fracture Micromechanism......Page 469
Material Characterization and Fracture Micromechanism......Page 470
Hybrid Model Finite Element Analysis......Page 471
The Effects of Notches on Deformation and Fracture Mechanisms......Page 473
Acknowledgements......Page 474
References......Page 475
Introduction......Page 476
Overview and Metrics of the Small Punch Test......Page 477
Accelerated and Natural Aging of UHMWPE......Page 478
In Vivo Changes in Mechanical Behavior of UHMWPE......Page 480
Effect of Ccrosslinking on Mechanical Behavior and Wear......Page 481
Shear Punch Testing of UHMWPE......Page 483
Fatigue Punch Testing of UHMWPE......Page 484
Conclusion......Page 485
References......Page 487
Introduction......Page 488
Depth-Sensing Indentation Testing Methods......Page 489
DSI Testing: Effects of Processing, Surface Preparation, and Prior Deformation......Page 492
DSI Testing: Effects of Oxidation and Crosslinking......Page 494
DSI Testing: Viscoelastic Behavior......Page 496
Nanoscratch Single Asperity Wear Tests and their Effects on Indentation Behavior......Page 497
References......Page 499
Introduction......Page 501
Evaluation of Penetration in tha Using Geometric Primitives......Page 502
Volume Measurement......Page 503
Evaluation of Penetration in Nonregularly Shaped Components......Page 504
Spatial Visualization of Penetration in Total Elbow Replacement Using Manual Registration......Page 505
Quantitative, Spatial Visualization of Penetration in Total Disc Replacements Using Automated Registration......Page 506
Using MicroCT to Visualize Third-Body Wear......Page 507
References......Page 508
Introduction......Page 509
Overview of Available Modeling and Simulation Approaches......Page 510
Characteristic Material Behavior of UHMWPE......Page 511
Material Models for UHMWPE......Page 513
Hyperelasticity......Page 514
Linear Viscoelasticity......Page 515
Isotropic J2-Plasticity......Page 516
The Hybrid Model......Page 517
Discussion......Page 520
References......Page 521
C......Page 523
D......Page 524
F......Page 525
I......Page 526
L......Page 527
O......Page 528
P......Page 529
S......Page 530
T......Page 531
X......Page 532
Z......Page 533