دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Yong Zeng, Ismail Guvenc, Rui Zhang, Giovanni Geraci, David W. Matolak سری: ISBN (شابک) : 1119575699, 9781119575696 ناشر: Wiley-IEEE Press سال نشر: 2021 تعداد صفحات: 650 [452] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Uav Communications for 5G and Beyond به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارتباطات UAV برای 5G و فراتر از آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای برنامه ریزی و طراحی سودمند برای افزایش انفجاری در آینده نزدیک در تعداد وسایل نقلیه هوایی بدون سرنشین (پهپادها) و کاربردهای سخت آنها، ادغام پهپادها در سیستم های ارتباط سلولی مورد توجه فزاینده ای قرار گرفته است. این کتاب مروری به موقع و جامع از تلاش های تحقیقاتی اخیر و نتایج ارتباطات شبکه سلولی یکپارچه با وسایل نقلیه هوایی بدون سرنشین (UAVs) ارائه می دهد. هدف این کتاب ارائه پوششی جامع از کاربردهای بالقوه، معماریهای شبکه، آخرین یافتههای تحقیقاتی و فنآوریهای کلیدی، نتایج اندازهگیری تجربی، و همچنین استانداردهای بهروز صنعت برای ارتباطات پهپاد در سیستمهای سلولی، از جمله LTE موجود و همچنین سیستم های آینده 5G و فراتر از آن.
To advantageously plan and design for the explosive near-future increase in the number of unmanned aerial vehicles (UAVs) and their demanding applications, integration of UAVs into cellular communication systems has seen increasing interest. This book provides a timely and comprehensive overview of the recent research efforts and results of unmanned aerial vehicles (UAVs)-integrated cellular network communications. The aim of the book is to provide a comprehensive coverage of the potential applications, networking architectures, latest research findings and key enabling technologies, experimental measurement results, as well as up-to-date industry standardizations for UAV communications in cellular systems, including the existing LTE as well as the future 5G-and-beyond systems.
Cover Title Page Copyright Contents List of Contributors Acronyms Part I Fundamentals of UAV Communications Chapter 1 Overview 1.1 UAV Definitions, Classes, and Global Trend 1.2 UAV Communication and Spectrum Requirement 1.3 Potential Existing Technologies for UAV Communications 1.3.1 Direct Link 1.3.2 Satellite 1.3.3 Ad‐Hoc Network 1.3.4 Cellular Network 1.4 Two Paradigms in Cellular UAV Communications 1.4.1 Cellular‐Connected UAVs 1.4.2 UAV‐Assisted Wireless Communications 1.5 New Opportunities and Challenges 1.5.1 High Altitude 1.5.2 High LoS Probability 1.5.3 High 3D Mobility 1.5.4 SWAP Constraints 1.6 Chapter Summary and Main Organization of the Book References Chapter 2 A Survey of Air‐to‐Ground Propagation Channel Modeling for Unmanned Aerial Vehicles 2.1 Introduction 2.2 Literature Review 2.2.1 Literature Review on Aerial Propagation 2.2.2 Existing Surveys on UAV AG Propagation 2.3 UAV AG Propagation Characteristics 2.3.1 Comparison of UAV AG and Terrestrial Propagation 2.3.2 Frequency Bands for UAV AG Propagation 2.3.3 Scattering Characteristics for AG Propagation 2.3.4 Antenna Configurations for AG Propagation 2.3.5 Doppler Effects 2.4 AG Channel Measurements: Configurations, Challenges, Scenarios, and Waveforms 2.4.1 Channel Measurement Configurations 2.4.2 Challenges in AG Channel Measurements 2.4.3 AG Propagation Scenarios 2.4.3.1 Open Space 2.4.3.2 Hilly/Mountainous 2.4.3.3 Forest 2.4.3.4 Water/Sea 2.4.4 Elevation Angle Effects 2.5 UAV AG Propagation Measurement and Simulation Results in the Literature 2.5.1 Path Loss/Shadowing 2.5.2 Delay Dispersion 2.5.3 Narrowband Fading and Ricean K‐factor 2.5.4 Doppler Spread 2.5.5 Effects of UAV AG Measurement Environment 2.5.5.1 Urban/Suburban 2.5.5.2 Rural/Open Field 2.5.5.3 Mountains/Hilly, Over Sea, Forest 2.5.6 Simulations for Channel Characterization 2.6 UAV AG Propagation Models 2.6.1 AG Propagation Channel Model Types 2.6.2 Path‐Loss and Large‐Scale Fading Models 2.6.2.1 Free‐Space Path‐Loss Model 2.6.2.2 Floating‐Intercept Path‐Loss Model 2.6.2.3 Dual‐Slope Path‐Loss Model 2.6.2.4 Log‐Distance Path‐Loss Model 2.6.2.5 Modified FSPL Model 2.6.2.6 Two‐Ray PL Model 2.6.2.7 Log‐Distance FI Model 2.6.2.8 LOS/NLOS Mixture Path‐Loss Model 2.6.3 Airframe Shadowing 2.6.4 Small‐Scale Fading Models 2.6.5 Intermittent MPCs 2.6.6 Effect of Frequency Bands on Channel Models 2.6.7 MIMO AG Propagation Channel Models 2.6.8 Comparison of Different AG Channel Models 2.6.8.1 Large‐Scale Fading Models 2.6.8.2 Small‐Scale Fading Models 2.6.9 Comparison of Traditional Channel Models with UAV AG Propagation Channel Models 2.6.10 Ray Tracing Simulations 2.6.11 3GPP Channel Models for UAVs 2.7 Conclusions References Chapter 3 UAV Detection and Identification 3.1 Introduction 3.2 RF‐Based UAV Detection Techniques 3.2.1 RF Fingerprinting Technique 3.2.2 WiFi Fingerprinting Technique 3.3 Multistage UAV RF Signal Detection 3.3.1 Preprocessing Step: Multiresolution Analysis 3.3.2 The Naive Bayesian Decision Mechanism for RF Signal Detection 3.3.3 Detection of WiFi and Bluetooth Interference 3.4 UAV Classification Using RF Fingerprints 3.4.1 Feature Selection Using Neighborhood Components Analysis (NCA) 3.5 Experimental Results 3.5.1 Experimental Setup 3.5.2 Detection Results 3.5.3 UAV Classification Results 3.6 Conclusion Acknowledgments References Part II Cellular‐Connected UAV Communications Chapter 4 Performance Analysis for Cellular‐Connected UAVs 4.1 Introduction 4.1.1 Motivation 4.1.2 Related Works 4.1.3 Contributions and Chapter Structure 4.2 Modelling Preliminaries 4.2.1 Stochastic Geometry 4.2.2 Network Architecture 4.2.3 Channel Model 4.2.4 Blockage Modeling and LoS Probability 4.2.5 User Association Strategy and Link SINR 4.3 Performance Analysis 4.3.1 Exact Coverage Probability 4.3.2 Approximations for UAV Coverage Probability 4.3.2.1 Discarding NLoS and Noise Effects 4.3.2.2 Moment Matching 4.3.3 Achievable Throughput and Area Spectral Efficiency Analysis 4.4 System Design: Study Cases and Discussion 4.4.1 Analysis of Accuracy 4.4.2 Design Parameters 4.4.2.1 Impact of UAV Altitude 4.4.2.2 Impact of UAV Antenna Beamwidth 4.4.2.3 Impact of UAV Antenna Tilt 4.4.2.4 Impact of Different Types of Environment 4.4.3 Heterogeneous Networks – Tier Selection 4.4.4 Network Densification 4.5 Conclusion References Chapter 5 Performance Enhancements for LTE‐Connected UAVs: Experiments and Simulations 5.1 Introduction 5.2 LTE Live Network Measurements 5.2.1 Downlink Experiments 5.2.2 Path‐Loss Model Characterization 5.2.3 Uplink Experiments 5.3 Performance in LTE Networks 5.4 Reliability Enhancements 5.4.1 Interference Cancellation 5.4.2 Inter‐Cell Interference Control 5.4.3 CoMP 5.4.4 Antenna Beam Selection 5.4.5 Dual LTE Access 5.4.6 Dedicated Spectrum 5.4.7 Discussion 5.5 Summary and Outlook References Chapter 6 3GPP Standardization for Cellular‐Supported UAVs 6.1 Short Introduction to LTE and NR 6.1.1 LTE Physical Layer and MIMO 6.1.2 NR Physical Layer and MIMO 6.2 Drones Served by Mobile Networks 6.2.1 Interference Detection and Mitigation 6.2.2 Mobility for Drones 6.2.3 Need for Drone Identification and Authorization 6.3 3GPP Standardization Support for UAVs 6.3.1 Measurement Reporting Based on RSRP Level of Multiple Cells 6.3.2 Height, Speed, and Location Reporting 6.3.3 Uplink Power Control Enhancement 6.3.4 Flight Path Signalling 6.3.5 Drone Authorization and Identification 6.4 Flying Mode Detection in Cellular Networks References Chapter 7 Enhanced Cellular Support for UAVs with Massive MIMO 7.1 Introduction 7.2 System Model 7.2.1 Cellular Network Topology 7.2.2 System Model 7.2.3 Massive MIMO Channel Estimation 7.2.4 Massive MIMO Spatial Multiplexing 7.3 Single‐User Downlink Performance 7.3.1 UAV Downlink C&C Channel 7.4 Massive MIMO Downlink Performance 7.4.1 UAV Downlink C&C Channel 7.4.2 UAV–GUE Downlink Interplay 7.5 Enhanced Downlink Performance 7.5.1 UAV Downlink C&C Channel 7.5.2 UAV–GUE Downlink Interplay 7.6 Uplink Performance 7.6.1 UAV Uplink C&C Channel and Data Streaming 7.6.2 UAV–GUE Uplink Interplay 7.7 Conclusions References Chapter 8 High‐Capacity Millimeter Wave UAV Communications 8.1 Motivation 8.2 UAV Roles and Use Cases Enabled by Millimeter Wave Communication 8.2.1 UAV Roles in Cellular Networks 8.2.2 UAV Use Cases Enabled by High‐Capacity Cellular Networks 8.3 Aerial Channel Models at Millimeter Wave Frequencies 8.3.1 Propagation Considerations for Aerial Channels 8.3.1.1 Atmospheric Considerations 8.3.1.2 Blockages 8.3.2 Air‐to‐Air Millimeter Wave Channel Model 8.3.3 Air‐to‐Ground Millimeter Wave Channel Model 8.3.4 Ray Tracing as a Tool to Obtain Channel Measurements 8.4 Key Aspects of UAV MIMO Communication at mmWave Frequencies 8.5 Establishing Aerial mmWave MIMO Links 8.5.1 Beam Training and Tracking for UAV Millimeter Wave Communication 8.5.2 Channel Estimation and Tracking in Aerial Environments 8.5.3 Design of Hybrid Precoders and Combiners 8.6 Research Opportunities 8.6.1 Sensing at the Tower 8.6.2 Joint Communication and Radar 8.6.3 Positioning and Mapping 8.7 Conclusions References Part III UAV‐Assisted Wireless Communications Chapter 9 Stochastic Geometry‐Based Performance Analysis of Drone Cellular Networks 9.1 Introduction 9.2 Overview of the System Model 9.2.1 Spatial Model 9.2.2 3GPP‐Inspired Mobility Model 9.2.3 Channel Model 9.2.4 Metrics of Interest 9.3 Average Rate 9.4 Handover Probability 9.5 Results and Discussion 9.5.1 Density of Interfering DBSs 9.5.2 Average Rate 9.5.3 Handover Probability 9.6 Conclusion Acknowledgment References Chapter 10 UAV Placement and Aerial–Ground Interference Coordination 10.1 Introduction 10.2 Literature Review 10.3 UABS Use Case for AG‐HetNets 10.4 UABS Placement in AG‐HetNet 10.5 AG‐HetNet Design Guidelines 10.5.1 Path‐Loss Model 10.5.1.1 Log‐Distance Path‐Loss Model 10.5.1.2 Okumura–Hata Path‐Loss Model 10.6 Inter‐Cell Interference Coordination 10.6.1 UE Association and Scheduling 10.7 Simulation Results 10.7.1 5pSE with UABSs Deployed on Hexagonal Grid 10.7.1.1 5pSE with Log‐Normal Path‐Loss Model 10.7.1.2 5pSE with Okumura–Hata Path‐Loss Model 10.7.2 5pSE with GA‐Based UABS Deployment Optimization 10.7.2.1 5pSE with Log‐Normal Path‐Loss Model 10.7.2.2 5pSE with Okumura–Hata Path‐Loss model 10.7.3 Performance Comparison Between Fixed (Hexagonal) and Optimized UABS Deployment with eICIC and FeICIC 10.7.3.1 Influence of LDPLM on 5pSE 10.7.3.2 Influence of OHPLM on 5pSE 10.7.4 Comparison of Computation Time for Different UABS Deployment Algorithms 10.8 Concluding remarks References Chapter 11 Joint Trajectory and Resource Optimization 11.1 General Problem Formulation 11.2 Initial Path Planning via the Traveling Salesman and Pickup‐and‐Delivery Problems 11.2.1 TSP without Return 11.2.2 TSP with Given Initial and Final Locations 11.2.3 TSP with Neighborhood 11.2.4 Pickup‐and‐Delivery Problem 11.3 Trajectory Discretization 11.3.1 Time Discretization 11.3.2 Path Discretization 11.4 Block Coordinate Descent 11.5 Successive Convex Approximation 11.6 Unified Algorithm 11.7 Summary References Chapter 12 Energy‐Efficient UAV Communications 12.1 UAV Energy Consumption Model 12.1.1 Fixed‐Wing Energy Model 12.1.1.1 Forces on a UAV 12.1.1.2 Straight and Level Flight 12.1.1.3 Circular Flight 12.1.1.4 Arbitrary Level Flight 12.1.1.5 Arbitrary 3D Flight 12.1.2 Rotary‐Wing Energy Model 12.2 Energy Efficiency Maximization 12.3 Energy Minimization with Communication Requirement 12.4 UAV–Ground Energy Trade‐off 12.5 Chapter Summary References Chapter 13 Fundamental Trade‐Offs for UAV Communications 13.1 Introduction 13.2 Fundamental Trade‐offs 13.2.1 Throughput–Delay Trade‐Off 13.2.2 Throughput–Energy Trade‐Off 13.2.3 Delay–Energy Trade‐Off 13.3 Throughput–Delay Trade‐Off 13.3.1 Single‐UAV‐Enabled Wireless Network 13.3.2 Multi‐UAV‐Enabled Wireless Network 13.4 Throughput–Energy Trade‐Off 13.4.1 UAV Propulsion Energy Consumption Model 13.4.2 Energy‐Constrained Trajectory Optimization 13.5 Further Discussions and Future Work 13.6 Chapter Summary References Chapter 14 UAV–Cellular Spectrum Sharing 14.1 Introduction 14.1.1 Cognitive Radio 14.1.1.1 Overlay Spectrum Sharing 14.1.1.2 Underlay Spectrum Sharing 14.1.2 Drone Communication 14.1.2.1 UAV Spectrum Sharing 14.1.2.2 UAV Spectrum Sharing with Exclusive Regions 14.1.3 Chapter Overview 14.2 SNR Meta‐Distribution of Drone Networks 14.2.1 Stochastic Geometry Analysis 14.2.2 Characteristic Function of the SNR Meta‐Distribution 14.2.3 LOS Probability 14.3 Spectrum Sharing of Drone Networks 14.3.1 Spectrum Sharing in Single‐Tier DSCs 14.3.2 Spectrum Sharing with Cellular Network 14.4 Summary References Part IV Other Advanced Technologies for UAV Communications Chapter 15 Non‐Orthogonal Multiple Access for UAV Communications 15.1 Introduction 15.1.1 Motivation 15.2 User‐Centric Strategy for Emergency Communications 15.2.1 System Model 15.2.1.1 Far user case 15.2.1.2 Near user case 15.2.2 Coverage Probability of the User‐Centric Strategy 15.3 UAV‐Centric Strategy for Offloading Actions 15.3.1 SINR Analysis 15.3.2 Coverage Probability of the UAV‐Centric Strategy 15.4 Numerical Results 15.4.1 User‐Centric Strategy 15.4.2 UAV‐Centric Strategy 15.5 Conclusions References Chapter 16 Physical Layer Security for UAV Communications 16.1 Introduction 16.2 Breaching Security in Wireless Networks 16.2.1 Denial‐of‐Service Attacks 16.2.2 Masquerade Attacks 16.2.3 Message Modification Attacks 16.2.4 Eavesdropping Intruders 16.2.5 Traffic Analysis 16.3 Wireless Network Security Requirements 16.3.1 Authenticity 16.3.2 Confidentiality 16.3.3 Integrity 16.3.4 Availability 16.4 Physical Layer Security 16.4.1 Physical Layer versus Upper Layers 16.4.2 Physical Layer Security Techniques 16.4.2.1 Artificial Noise 16.4.2.2 Cooperative Jamming 16.4.2.3 Protected Zone 16.5 Physical Layer Security for UAVs 16.5.1 UAV Trajectory Design to Enhance PLS 16.5.2 Cooperative Jamming to Enhance PLS 16.5.3 Spectral‐ and Energy‐Efficient PLS Techniques 16.6 A Case Study: Secure UAV Transmission 16.6.1 System Model 16.6.1.1 Location Distribution and mmWave Channel Model 16.6.2 Protected Zone Approach for Enhancing PLS 16.6.3 Secure NOMA for UAV BS Downlink 16.6.3.1 Secrecy Outage and Sum Secrecy Rates 16.6.3.2 Shape Optimization for Protected Zone 16.6.3.3 Numerical Results 16.6.3.4 Location of the Most Detrimental Eavesdropper 16.6.3.5 Impact of the Protected Zone Shape on Secrecy Rates 16.6.3.6 Variation of Secrecy Rates with Altitude Summary References Chapter 17 UAV‐Enabled Wireless Power Transfer 17.1 Introduction 17.2 System Model 17.3 Sum‐Energy Maximization 17.4 Min‐Energy Maximization under Infinite Charging Duration 17.4.1 Multi‐Location‐Hovering Solution 17.5 Min‐Energy Maximization Under Finite Charging Duration 17.5.1 Successive Hover‐and‐Fly Trajectory Design 17.5.1.1 Flying Distance Minimization to Visit Γ Hovering Locations 17.5.1.2 Hovering Time Allocation When T≥Tfly 17.5.1.3 Trajectory Refinement When T