دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Nilanjan Dey (editor), Amira S. Ashour (editor), Simon James Fong PhD (editor), Surekha Borra (editor) سری: Advances in ubiquitous sensing applications for healthcare ISBN (شابک) : 0128153709, 9780128153703 ناشر: Academic Press سال نشر: 2018 تعداد صفحات: 410 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 34 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب U-Healthcare Monitoring Systems: Volume 1: Design and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب U-Healthcare Monitoring Systems: جلد 1: طراحی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستمهای مانیتورینگ U-Healthcare: جلد اول: طراحی و برنامهها بر طراحی سیستمهای مراقبت بهداشتی کارآمد U-Healthcare که نیاز به یکپارچهسازی و توسعه خدمات/امکانات فناوری اطلاعات، فناوری حسگرهای بیسیم، ابزارهای ارتباطی بیسیم دارند تمرکز دارد. و تکنیک های بومی سازی، همراه با نظارت بر مدیریت سلامت، از جمله افزایش خدمات تجاری یا خدمات آزمایشی. این سیستمهای u-healthcare به کاربران این امکان را میدهند که شرایط سلامت والدین خود را از راه دور بررسی و مدیریت کنند. علاوه بر این، سرویس آگاه از زمینه در سیستمهای u-healthcare شامل رایانهای است که خدمات هوشمندی را بر اساس شرایط مختلف کاربر با ارائه اطلاعات مناسب مرتبط با وضعیت کاربر ارائه میکند.
این جلد به مهندسان کمک میکند تا حسگرها، سیستمهای بیسیم و سیستمهای تعبیهشده ارتباطات بیسیم را طراحی کنند تا یک سیستم نظارت یکپارچه مراقبت بهداشتی u-healthcare را ارائه کنند. این جلد پایه محکمی را در طراحی و کاربردهای سیستمهای نظارت u-healthcare در اختیار خوانندگان قرار میدهد.
U-Healthcare Monitoring Systems: Volume One: Design and Applications focuses on designing efficient U-healthcare systems which require the integration and development of information technology service/facilities, wireless sensors technology, wireless communication tools, and localization techniques, along with health management monitoring, including increased commercialized service or trial services. These u-healthcare systems allow users to check and remotely manage the health conditions of their parents. Furthermore, context-aware service in u-healthcare systems includes a computer which provides an intelligent service based on the user’s different conditions by outlining appropriate information relevant to the user’s situation.
This volume will help engineers design sensors, wireless systems and wireless communication embedded systems to provide an integrated u-healthcare monitoring system. This volume provides readers with a solid basis in the design and applications of u-healthcare monitoring systems.
Cover U-Healthcare Monitoring Systems, Volume 1: Design and Applications Copyright Contributors Preface 1 Wearable U-HRM device for rural applications Introduction U-Healthcare System in India Application Open Issues and Problems Requirements of a Healthcare System Requirement of Wearable Devices Implementation Measurement of Heart Rate and Body Temperature Discussion Conclusion and Future Trends Glossary References 2 A robust framework for optimum feature extraction and recognition of P300 from raw EEG Introduction Literature Survey The Framework Initialization Model Setup Preprocessors Custom epoch extractor (Cepex) Postprocessor Classification Results and Discussion The Dataset Framework Results Preprocessing Postprocessing Classification Performance comparison Open source implementation Conclusion and Future Work References 3 Medical image diagnosis for disease detection: A deep learning approach Introduction Related Work Requirement of Deep Learning Over Machine Learning Fundamental Deep Learning Architectures Multilayer Perceptron Deep Belief Networks Stacked Auto-Encoder Convolution Neural Networks Convolution architecture Convolution layers Stride and pooling layers Fully connected Recurrent Neural Network How does LSTM improve the RNN? Implementation Environment Toolkit Selection/Evaluation Criteria [13] Tools and Technology Available for Deep Learning [13] Deep Learning Framework Popularity Levels [14] Applicability of Deep Learning in Field of Medical Image Processing [15] Current Research Applications in the Field of Medical Image Processing Hybrid Architectures of Deep Learning in the Field of Medical Image Processing [17] Challenges of Deep Learning in the Fields of Medical Imagining [17] Conclusion References Further Reading 4 Reasoning methodologies in clinical decision support systems: A literature review Introduction Methods Research Questions Selection Criteria Search Strategy Literature Review and Results Paper Screening Selecting the Most Relevant Papers Extracting and Analyzing Concepts Rule-based reasoning Ontology reasoning Ontology-based fuzzy decision support system Case-based reasoning Current Challenges and Future Trends Conclusion References 5 Embedded healthcare system for day-to-day fitness, chronic kidney disease, and congestive heart failure Ubiquitous Healthcare and Present Chapter Introduction Frequency-Dependent Behavior of Body Composition Bioimpedance Analysis for Estimation of Day-to-Day Fitness and Chronic Diseases Measurement System for Body Composition Analysis Using Bioimpedance Principle Measurement Electrodes AFE4300 Body Composition Analyzer Statistical Analysis Validation of Developed Model Database Generation Predictive Regression Model for Day-to-Day Fitness Predictive Regression Model for CKD Predictive Regression Model for CHF Discussion Conclusion References 6 Comparison of multiclass and hierarchical CAC design for benign and malignant hepatic tumors Introduction Materials and Methods Dataset Collection Data Set Description Data Collection Protocol ROIs Selection ROI Size Selection Proposed CAC System Design Feature Extraction Module Classification Module SSVM classifier Results Experiment 1: To Evaluate the Potential of the Threeclass SSVM Classifier Design for the Characterization of Benign and Ma ... Experiment 2: To Evaluate the Potential of SSVM-Based Hierarchical Classifier Design for Characterization Between Benign a ... Experiment 3: Performance Comparison of SSVM-Based Three-Class Classifier Design and SSVM-Based Hierarchical Classifier De ... Discussion and Conclusion References Further Reading 7 Ontology enhanced fuzzy clinical decision support system Introduction Problem Description Related Work The Combining of Ontology and Fuzzy Logic Frameworks System Architecture and Research Methodology Knowledge Acquisition Semantic Modeling The Fuzzy Modeling Raw EHR data preprocessing Features definition and fuzzification Features selection and DT induction Knowledge Reasoning Initial fuzzy knowledge base construction Enhancement of the generated fuzzy knowledge The inference engine The defuzzification process Framework evaluation Conclusion References Further Reading 8 Improving the prediction accuracy of heart disease with ensemble learning and majority voting rule Introduction Review of Related Works Ensemble Learning Systems Diversity Training Ensemble Members Combining Ensemble Members Materials and Methods Logistic Regression Multilayer Perceptron Naïve Bayes Combining Classifiers Using Majority Vote Rule Performance Metrics Result and Discussion Conclusion and Future Directions References Further Reading 9 Machine learning for medical diagnosis: A neural network classifier optimized via the directed bee colony optimization alg ... Introduction Neural Network Dynamics Directed Bee Colony Optimization Algorithm Experimental Setup Result and Discussion Conclusion References Further Reading 10 A genetic algorithm-based metaheuristic approach to customize a computeraided classification system for enhanced screen fi ... Introduction Methodology for Designing a CAD System for Diagnosis of Abnormal Mammograms Image Data Set Description Enhancement Methods Alpha trimmed mean filter Contrast adjustment Histogram equalization Contrast limited adaptive histogram equalization Recursive mean separated histogram equalization Contra harmonic mean filter Mean filter Median filter Hybrid median filter Morphological enhancement Morphological enhancement and contrast stretching Unsharp masking Unsharp masking and contrast stretching Wavelet based subband filtering Selection of ROIs Selection of ROI size Feature Extraction: Gabor Wavelet Transform Features SVM Classifier Experimental Results Obtaining the Accuracies of Classification of Abnormal Mammograms After Enhancement With Alpha Trimmed Mean Filter Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Enhancement With Contrast Stretching Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Enhancement With Histogram Equalization Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Enhancement With CLAHE Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Enhancement With RMSHE Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Enhancement With Contra-Harmonic Mean Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Enhancement With Mean Filter Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Enhancement With Median Filter Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Enhancement With Hybrid Median Filter Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Morphological Enhancement Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Morphological Enhancement, Followed B ... Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Unsharp Masking Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After UMCA Obtaining the Accuracies of Classification of Diagnosis of Abnormal Mammograms After Wavelet-Based Subband Filtering Comparison of Classification Performance of the Enhancement Methods Genetic Algorithm-Based Metaheuristic Approach to Customize a Computer-Aided Classification System for Enhanced Mammograms Conclusion Future Scope References Further Reading 11 Embedded healthcare system based on bioimpedance analysis for identification and classification of skin diseases in Indian ... Introduction Need of Bioimpedance Measurement for Identification and Classification of Skin Diseases System Developed for the Measurement of Human Skin Impedance Skin Electrode Impedance Converter IC AD5933 Microcontroller IC CY7C68013A Personal Computer Generation of a Database of Indian Skin Diseases Impedance Indices for Identification and Classification of Skin Diseases Identification of Skin Diseases Wilcoxon Signed Rank Test Measures of Classification of Skin Diseases Box and Whisker Plot of Impedance Indices Mean and Standard Deviation of Impedance Indices Classification of Skin Diseases Using Modular Fuzzy Hypersphere Neural Network Conclusion References 12 A hybrid CAD system design for liver diseases using clinical and radiological data Introduction Methodology Adopted CAD System Design A Dataset description Feature extraction Feature classification Classification results CAD System Design B Dataset description Feature extraction Feature classification Classification results CAD System Design C: Hybrid CAD System Discussion Conclusion and Future Scope References Further Reading 13 Ontology-based electronic health record semantic interoperability: A survey Introduction EHR and Its Interoperability Introduction and Definitions The Interoperability Benefits The Different Interoperability Levels EHR Semantic Interoperability Requirements E-Health Standards and Interoperability Ontologies and Their Role in EHR Methods Research Questions Search Strategy Search Results Discussion The Challenges of EHR Semantic Interoperability Conclusion References 14 A unified fuzzy ontology for distributed electronic health record semantic interoperability Introduction EHR Clinical and Business Benefits and Outcomes EHR Semantic Interoperability Barriers and Obstacles The heterogeneity problem Dynamics and complexities of healthcare systems The challenges of standards Related Work Preliminaries Techniques and Approaches of EHR Semantic Interoperability EHR Standards Ontologies Terminologies Semantic Interoperability Frameworks Privacy and Security in EHR Systems Methodology The Proposed Framework A Prototype Problem Example A Comparison Study Conclusion References Further Reading Index A B C D E F G H I K L M N O P R S T U V W X Back Cover