دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: S. Mostafa Ghiaasiaan
سری:
ISBN (شابک) : 9781107153301
ناشر: Cambridge University Press
سال نشر: 2017
تعداد صفحات: 799
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب جریان دو فاز، جوشش و چگالش: در سیستم های معمولی و مینیاتوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این نسخه کاملاً پیشرفته و به روز شده با ارائه مقدمه ای جامع بر مبانی و کاربردهای جریان و انتقال حرارت در سیستم های معمولی و مینیاتوری، تمام موضوعات ضروری برای دوره های تحصیلات تکمیلی در جریان دو فاز، جوشش و تراکم را پوشش می دهد. با شروع بررسی مختصر اصول جریان تک فاز و پدیده های سطحی، بحث دقیق و روشن در مورد طیف وسیعی از موضوعات، از جمله هیدرودینامیک دو فازی و رژیم های جریان، مدل سازی ریاضی جریان های دو فازی گاز-مایع، استخر و جریان ارائه می شود. جوش، جریان و جوش در مینی و میکروکانال، چگالش جریان خارجی و داخلی با و بدون مواد غیر متراکم، چگالش در معابر جریان کوچک و جریان چوک شده دو فاز. مثالهای حلشده متعدد و مسائل انتهای فصل که شامل بسیاری از مشکلات رایج طراحی است که احتمالاً دانشجویان با آنها مواجه میشوند، این متن را به یک متن ضروری برای دانشجویان تحصیلات تکمیلی تبدیل میکند. با جزئیات به روز در مورد جدیدترین روندهای تحقیقاتی و کاربردهای عملی، همچنین یک مرجع ایده آل برای متخصصان و محققان در مهندسی مکانیک، هسته ای و شیمی است.
Providing a comprehensive introduction to the fundamentals and applications of flow and heat transfer in conventional and miniature systems, this fully enhanced and updated edition covers all the topics essential for graduate courses on two-phase flow, boiling, and condensation. Beginning with a concise review of single-phase flow fundamentals and interfacial phenomena, detailed and clear discussion is provided on a range of topics, including two-phase hydrodynamics and flow regimes, mathematical modeling of gas-liquid two-phase flows, pool and flow boiling, flow and boiling in mini and microchannels, external and internal-flow condensation with and without noncondensables, condensation in small flow passages, and two-phase choked flow. Numerous solved examples and end-of-chapter problems that include many common design problems likely to be encountered by students, make this an essential text for graduate students. With up-to-date detail on the most recent research trends and practical applications, it is also an ideal reference for professionals and researchers in mechanical, nuclear, and chemical engineering.
Contents Preface to the Second Edition Preface to the First Edition Frequently Used Notation PART ONE. TWO-PHASE FLOW 1 Thermodynamic and Single-Phase Flow Fundamentals 1.1 States of Matter and Phase Diagrams for Pure Substances 1.1.1 Equilibrium States 1.1.2 Metastable States 1.2 Transport Equations and Closure Relations 1.3 Single-Phase Multicomponent Mixtures 1.4 Phase Diagrams for Binary Systems 1.5 Thermodynamic Properties of Vapor–Noncondensable Gas Mixtures 1.6 Transport Properties 1.6.1 Mixture Rules 1.6.2 Gaskinetic Theory 1.6.3 Diffusion in Liquids 1.7 Turbulent Boundary Layer Velocity and Temperature Profiles 1.8 Convective Heat and Mass Transfer Problems 2 Gas–Liquid Interfacial Phenomena 2.1 Surface Tension and Contact Angle 2.1.1 Surface Tension 2.1.2 Contact Angle 2.1.3 Dynamic Contact Angle and Contact Angle Hysteresis 2.1.4 Surface Tension Nonuniformity 2.2 Effect of Surface-Active Impurities on Surface Tension 2.3 Thermocapillary Effect 2.4 Disjoining Pressure in Thin Films 2.5 Liquid–Vapor Interphase at Equilibrium 2.6 Attributes of Interfacial Mass Transfer 2.6.1 Evaporation and Condensation 2.6.2 Sparingly Soluble Gases 2.7 Semi-Empirical Treatment of Interfacial Transfer Processes 2.8 Multicomponent Mixtures 2.9 Interfacial Waves and the Linear Stability Analysis Method 2.10 Two-Dimensional Surface Waves on the Surface of an Inviscid and Quiescent Liquid 2.11 Rayleigh–Taylor and Kelvin–Helmholtz Instabilities 2.12 Rayleigh–Taylor Instability for a Viscous Liquid 2.13 Waves at the Surface of Small Bubbles and Droplets 2.14 Growth of a Vapor Bubble in Superheated Liquid Problems 3 Two-Phase Mixtures, Fluid Dispersions, and Liquid Films 3.1 Introductory Remarks about Two-Phase Mixtures 3.2 Time, Volume, and Composite Averaging 3.2.1 Phase Volume Fractions 3.2.2 Averaged Properties 3.3 Flow-Area Averaging 3.4 Some Important Definitions for Two-Phase Mixture Flows 3.4.1 General Definitions 3.4.2 Definitions for Flow-Area-Averaged One-Dimensional Flow 3.4.3 Homogeneous-Equilibrium Flow 3.5 Convention for the Remainder of This Book 3.6 Particles of One Phase Dispersed in a Turbulent Flow Field of Another Phase 3.6.1 Turbulent Eddies and Their Interaction with Suspended Fluid Particles 3.6.2 The Population Balance Equation 3.6.3 Coalescence 3.6.4 Breakup 3.7 Conventional, Mini-, and Microchannels 3.7.1 Basic Phenomena and Size Classification for Single-Phase Flow 3.7.2 Size Classification for Two-Phase Flow 3.8 Falling Liquid Films 3.8.1 Laminar Falling Liquid Films 3.8.2 Turbulent Falling Liquid Films 3.9 Heat Transfer Correlations for Falling Liquid Films 3.10 Mechanistic Modeling of Liquid Films Problems 4 Two-Phase Flow Regimes – I 4.1 Introductory Remarks 4.2 Two-Phase Flow Regimes in Adiabatic Pipe Flow 4.2.1 Vertical, Co-current, Upward Flow 4.2.2 Co-current Horizontal Flow 4.3 Flow Regime Maps for Pipe Flow 4.4 Two-Phase Flow Regimes in Rod Bundles 4.5 Two-Phase Flow in Curved Passages 4.6 Comments on Empirical Flow Regime Maps Problems 5 Two-Phase Flow Modeling 5.1 General Remarks 5.2 Local Instantaneous Equations and Interphase Balance Relations 5.3 Two-Phase Flow Models 5.4 Flow-Area Averaging 5.5 One-Dimensional Homogeneous-Equilibrium Model: Single-Component Fluid 5.6 One-Dimensional Homogeneous-Equilibrium Model: Two-Component Mixture 5.7 One-Dimensional Separated-Flow Model: Single-Component Fluid 5.8 One-Dimensional Separated-Flow Model: Two-Component Fluid 5.9 Multi-dimensional Two-Fluid Model 5.10 Numerical Solution of Steady, One-Dimensional Conservation Equations 5.10.1 Casting the One-Dimensional ODE Model Equations in a Standard Form 5.10.2 Numerical Solution of the ODEs Problems 6 The Drift Flux Model and Void-Quality Relations 6.1 The Concept of Drift Flux 6.2 Two-Phase Flow Model Equations Based on the DFM 6.3 DFM Parameters for Pipe Flow 6.4 DFM Parameters for Rod Bundles 6.5 DFM in Minichannels 6.6 Void-Quality Correlations Problems 7 Two-Phase Flow Regimes – II 7.1 Introductory Remarks 7.2 Upward, Co-current Flow in Vertical Tubes 7.2.1 Flow Regime Transition Models of Taitel et al 7.2.2 Flow Regime Transition Models of Mishima and Ishii 7.3 Co-current Flow in a Near-Horizontal Tube 7.4 Two-Phase Flow in an Inclined Tube 7.5 Dynamic Flow Regime Models and Interfacial Surface Area Transport Equations 7.5.1 The Interfacial Area Transport Equation 7.5.2 Simplification of the Interfacial Area Transport Equation 7.5.3 Two-Group Interfacial Area Transport Equations Problems 8 Pressure Drop in Two-Phase Flow 8.1 Introduction 8.2 Two-Phase Frictional Pressure Drop in Homogeneous Flow and the Concept of a Two-Phase Multiplier 8.3 Empirical Two-Phase Frictional Pressure Drop Methods 8.4 General Remarks about Local Pressure Drops 8.5 Single-Phase Flow Pressure Drops Caused by Flow Disturbances 8.5.1 Single-Phase Flow Pressure Drop across a Sudden Expansion 8.5.2 Single-Phase Flow Pressure Drop across a Sudden Contraction 8.5.3 Pressure Change Caused by Other Flow Disturbances 8.6 Two-Phase Flow Local Pressure Drops 8.7 Pressure Drop in Helical Flow Passages 8.7.1 Hydrodynamics of Single-Phase Flow 8.7.2 Frictional Pressure Drop in Two-Phase Flow Problems 9 Countercurrent Flow Limitation 9.1 General Description 9.2 Flooding Correlations for Vertical Flow Passages 9.3 Flooding in Horizontal, Perforated Plates and Porous Media 9.4 Flooding in Vertical Annular or Rectangular Passages 9.5 Flooding Correlations for Horizontal and Inclined Flow Passages 9.6 Effect of Phase Change on CCFL 9.7 Modeling of CCFL Based on the Separated-Flow Momentum Equations Problems 10 Two-Phase Flow in Small Flow Passages 10.1 Two-Phase Flow Regimes in Minichannels 10.2 Void Fraction in Minichannels 10.3 Two-Phase Flow Regimes and Void Fraction in Microchannels 10.4 Two-Phase Flow and Void Fraction in Thin Rectangular Channels and Annuli 10.4.1 Flow Regimes in Vertical and Inclined Channels 10.4.2 Flow Regimes in Rectangular Channels and Annuli 10.5 Two-Phase Pressure Drop 10.6 Semitheoretical Models for Pressure Drop in the Intermittent Flow Regime 10.7 Ideal, Laminar Annular Flow 10.8 The Bubble Train (Taylor Flow) Regime 10.8.1 General Remarks 10.8.2 Some Useful Correlations 10.9 Pressure Drop Caused by Flow-Area Changes Problems PART TWO. BOILING AND CONDENSATION 11 Pool Boiling 11.1 The Pool Boiling Curve 11.2 Heterogeneous Bubble Nucleation and Ebullition 11.2.1 Heterogeneous Bubble Nucleation and Active Nucleation Sites 11.2.2 Bubble Ebullition 11.2.3 Heat Transfer Mechanisms in Nucleate Boiling 11.3 Nucleate Boiling Correlations 11.4 The Hydrodynamic Theory of Boiling and Critical Heat Flux 11.5 Film Boiling 11.5.1 Film Boiling on a Horizontal, Flat Surface 11.5.2 Film Boiling on a Vertical, Flat Surface 11.5.3 Film Boiling on Horizontal Tubes 11.5.4 The Effect of Thermal Radiation in Film Boiling 11.6 Minimum Film Boiling 11.7 Transition Boiling 11.8 Pool Boiling in Binary Liquid Mixtures 11.8.1 Nucleate Boiling Process 11.8.2 Nucleate Boiling Heat Transfer Correlations 11.8.3 Critical Heat Flux Problems 12 Flow Boiling 12.1 Forced-Flow Boiling Regimes 12.2 Flow Boiling Curves 12.3 Flow Patterns and Temperature Variation in Subcooled Boiling 12.4 Onset of Nucleate Boiling 12.5 Empirical Correlations for the Onset of Significant Void 12.6 Mechanistic Models for Hydrodynamically Controlled Onset of Significant Void 12.7 Transition from Partial Boiling to Fully Developed Subcooled Boiling 12.8 Hydrodynamics of Subcooled Flow Boiling 12.9 Pressure Drop in Subcooled Flow Boiling 12.10 Partial Flow Boiling 12.11 Fully Developed Subcooled Flow Boiling Heat Transfer Correlations 12.12 Characteristics of Saturated Flow Boiling 12.13 Saturated Flow Boiling Heat Transfer Correlations 12.14 Flow-Regime-Dependent Correlations for Saturated Boiling in Horizontal Channels 12.15 Two-Phase Flow Instability 12.15.1 Static Instabilities 12.15.2 Dynamic Instabilities 12.16 Flow Boiling in Binary Liquid Mixtures 12.17 Flow Boiling in Helically Coiled Flow Passages Problems 13 Critical Heat Flux and Post-CHF Heat Transfer in Flow Boiling 13.1 Critical Heat Flux Mechanisms 13.2 Experiments and Parametric Trends 13.3 Correlations for Upward Flow in Vertical Channels 13.4 Correlations for Subcooled Upward Flow of Water in Vertical Channels 13.5 Mechanistic Models for DNB 13.6 Mechanistic Models for Dryout 13.7 CHF in Inclined and Horizontal Systems 13.8 Post-Critical Heat Flux Heat Transfer 13.9 Critical Heat Flux in Binary Liquid Mixtures Problems 14 Flow Boiling and CHF in Small Passages 14.1 Mini- and Microchannel-Based Cooling Systems 14.2 Boiling Two-Phase Flow Patterns and Flow Instability 14.2.1 Flow Regimes in Minichannels with Stable Flow Rates 14.2.2 Flow Phenomena in Arrays of Parallel Channels 14.3 Onset of Nucleate Boiling and Onset of Significant Void 14.3.1 ONB and OSV in Channels with Hard Inlet Conditions 14.3.2 Boiling Initiation and Evolution in Arrays of Parallel Mini- and Microchannels 14.4 Boiling Heat Transfer 14.4.1 Background and Experimental Data 14.4.2 Boiling Heat Transfer Mechanisms 14.4.3 Flow Boiling Correlations 14.5 Critical Heat Flux in Small Channels 14.5.1 General Remarks and Parametric Trends in the Available Data 14.5.2 Models and Correlations Problems 15 Fundamentals of Condensation 15.1 Basic Processes in Condensation 15.2 Thermal Resistances in Condensation 15.3 Laminar Condensation on Isothermal, Vertical, and Inclined Flat Surfaces 15.4 Empirical Correlations for Wavy-Laminar and Turbulent Film Condensation on Vertical Flat Surfaces 15.5 Interfacial Shear 15.6 Laminar Film Condensation on Horizontal Tubes 15.7 Condensation in the Presence of a Noncondensable 15.8 Fog Formation 15.9 Condensation of Binary Fluids Problems 16 Internal-Flow Condensation and Condensation on Liquid Jets and Droplets 16.1 Introduction 16.2 Two-Phase Flow Regimes 16.3 Condensation Heat Transfer Correlations for a Pure Saturated Vapor 16.3.1 Correlations for Vertical, Downward Flow 16.3.2 Correlations for Horizontal Flow 16.3.3 Semi-Analytical Models for Horizontal Flow 16.4 Effect of Noncondensables on Condensation Heat Transfer 16.5 Direct-Contact Condensation 16.6 Mechanistic Models for Condensing Annular Flow 16.7 Flow Condensation in Small Channels 16.8 Condensation Flow Regimes and Pressure Drop in Small Channels 16.8.1 Flow Regimes in Minichannels 16.8.2 Flow Regimes in Microchannels 16.8.3 Pressure Drop in Condensing Two-Phase Flows 16.9 Flow Condensation Heat Transfer in Small Channels 16.10 Condensation in Helical Flow Passages 16.11 Internal Flow Condensation of Binary Vapor Mixtures Problems 17 Choking in Two-Phase Flow 17.1 Physics of Choking 17.2 Velocity of Sound in Single-Phase Fluids 17.3 Critical Discharge Rate in Single-Phase Flow 17.4 Choking in Homogeneous Two-Phase Flow 17.5 Choking in Two-Phase Flow with Interphase Slip 17.6 Critical Two-Phase Flow Models 17.6.1 The Homogeneous-Equilibrium Isentropic Model 17.6.2 Critical Flow Model of Moody 17.6.3 Critical Flow Model of Henry and Fauske 17.7 RETRAN Curve Fits for Critical Discharge of Water and Steam 17.8 The Omega Parameter Methods 17.9 Choked Two-Phase Flow in Small Passages 17.10 Nonequilibrium Mechanistic Modeling of Choked Two-Phase Flow Problems APPENDIX A: Thermodynamic Properties of Saturated Water and Steam APPENDIX B: Transport Properties of Saturated Water and Steam APPENDIX C: Thermodynamic Properties of Saturated Liquid and Vapor for Selected Refrigerants APPENDIX D: Properties of Selected Ideal Gases at 1 Atmosphere APPENDIX E: Binary Diffusion Coefficients of Selected Gases in Air at APPENDIX F: Henry’s Constant of Dilute Aqueous Solutions of Selected Substances at 298.16 K Temperature and Moderate Pressures APPENDIX G: Diffusion Coefficients of Selected Substances in Water at Infinite Dilution at 25 °C APPENDIX H: Lennard-Jones (6–12) Potential Model Constants for Selected Molecules APPENDIX I: Collision Integrals for the Lennard-Jones (6–12) Potential Model APPENDIX J: Physical Constants APPENDIX K: Unit Conversions References Index