دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Torres J.P., Torner L. (eds.) سری: ISBN (شابک) : 3527409076 ناشر: Wiley سال نشر: 2011 تعداد صفحات: 288 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Twisted Photons: Applications of Light with Orbital Angular Momentum به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فوتون های پیچ خورده: کاربردهای نور با تکانه زاویه ای مداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به کاربردهایی در چندین حوزه علم و فناوری می پردازد که از نوری که حرکت زاویه ای مداری را حمل می کند استفاده می کند. در اکثر سناریوهای عملی، تکانه زاویه ای را می توان به دو سهم مستقل تجزیه کرد: تکانه زاویه ای اسپین و تکانه زاویه ای مداری. سهم مداری درجه آزادی اساسا جدیدی را با کاربردهای جذاب و گسترده ارائه می دهد. برخلاف تکانه زاویهای اسپین که با قطبش نور مرتبط است، تکانه زاویهای مداری در نتیجه توزیع فضایی شدت و فاز یک میدان نوری، حتی تا حد تک فوتون ایجاد میشود. محققان شروع به درک مفاهیم آن برای درک ما از روشهای تعامل نور و ماده و پتانسیل عملی آن در حوزههای مختلف علم و فناوری کردهاند.
This book deals with applications in several areas of science and technology that make use of light which carries orbital angular momentum. In most practical scenarios, the angular momentum can be decomposed into two independent contributions: the spin angular momentum and the orbital angular momentum. The orbital contribution affords a fundamentally new degree of freedom, with fascinating and wide-spread applications. Unlike spin angular momentum, which is associated with the polarization of light, the orbital angular momentum arises as a consequence of the spatial distribution of the intensity and phase of an optical field, even down to the single photon limit. Researchers have begun to appreciate its implications for our understanding of the ways in which light and matter can interact, and its practical potential in different areas of science and technology.
z......Page
Preface XI 11......Page 0011
Color Plates XIX 19......Page 0019
--- – per photon 1......Page 0044
simple diffraction gratings 4......Page 0047
References 9......Page 0052
zero amplitude curves 13......Page 0056
--- Berry notation 14......Page 0057
--- – electric vector distribution 15......Page 0058
--- – of ring-like channel or cuvette 21......Page 0064
2.5 Conclusion 22......Page 0065
References 23......Page 0066
--- – conversion of HG mode to 25–26......Page 0068
polarized states 26......Page 0069
--- polarization of 27–28......Page 0070
--- – quantum implications of 29–30......Page 0072
--- – switching of states 30......Page 0073
photon drag 32......Page 0075
3.4 Conclusions 33......Page 0076
References 34......Page 0077
photonics 37......Page 0079
--- – scalar field of 38–39......Page 0080
torque 41......Page 0083
ray optics 43–44......Page 0085
paraxial scalar field 44......Page 0086
time-averaged Poynting vector 45......Page 0087
--- – transfer of linear momentum acting on 49......Page 0091
pseudotensor 50......Page 0092
--- – biological applications 51......Page 0093
--- – supercontinuum light field and 57......Page 0099
--- – hydrodynamic interactions 61......Page 0103
References 62......Page 0104
smectic liquid crystals (SLCs) 67......Page 0108
spin-to-orbital conversion (STOC) 70......Page 0111
--- – dynamic equations of 71–73......Page 0112
--- – angular momentum fluxes 73–78......Page 0114
--- momentums 78–81......Page 0119
--- 81......Page 0122
--- – with unpolarized light 83......Page 0124
--- – with circularly polarized light 85–89......Page 0126
5.3 Conclusions 89......Page 0130
References 90......Page 0131
--- momentum 93......Page 0134
--- 96–97......Page 0137
--- – usingNOA63 resin 97......Page 0138
--- – in a Gaussian beam 98......Page 0139
--- – optically driven micromachines 100–101......Page 0141
--- Rayleigh approximation 102......Page 0143
--- – optical force and torque, calculation of 105......Page 0146
6.4.3 Discussion 111......Page 0152
References 113......Page 0154
--- – using noncontact manipulation tool 117......Page 0157
two-photon polymerization method 118......Page 0158
--- SU8 photoresist 120......Page 0160
--- – structure building by 121......Page 0161
--- 124–126......Page 0164
--- 126–128......Page 0166
--- 128......Page 0168
--- – in optical tweezers 131–134......Page 0171
--- 134–138......Page 0174
--- Boltzmann energy distribution 135–136......Page 0175
7.7 Conclusion 138......Page 0178
References 139......Page 0179
--- Zernike phase ring 143......Page 0182
zero-order Fourier component 144......Page 0183
--- 146......Page 0185
--- – isotropic edge enhancement 148–149......Page 0187
--- – pseudorelief images 149–150......Page 0188
--- – spiral fringe metrology with 150–151......Page 0189
--- resolution attainable in 151......Page 0190
--- – in an ‘‘off-axis configuration’’ 152......Page 0191
radiation from nature, study of 155......Page 0194
--- Einstein-de Haas-type experiments 156......Page 0195
--- 158–159......Page 0197
--- – Rayleigh criterion 159–162......Page 0198
--- T122 Asiago telescope 162......Page 0201
--- – l-valued spiral phase plates (SPPs) 165......Page 0204
--- Poynting’s theorem 169......Page 0208
9.A.2 Photon Picture 170......Page 0209
--- Dirac–Majorana equation, for EM field 175......Page 0214
--- Gross–Pitaevskii equation 179......Page 0218
photonic-crystal fibers (PCFs) 181......Page 0220
--- – quantum fiber propagation 182–183......Page 0221
--- – via self-phase modulation 184–185......Page 0223
--- – and Kerr effect 186–188......Page 0225
--- scheme 188......Page 0227
--- flows 189–194......Page 0228
--- experience 190–191......Page 0229
--- – N-atom dynamics 191–192......Page 0230
--- – values of winding number 192......Page 0231
--- – coupled-amplitude equations 194......Page 0233
References 195......Page 0234
--- 199–201......Page 0238
--- – single 201–203......Page 0240
--- – multiple 203–207......Page 0242
--- schemes 207–209......Page 0246
11.5 Discussion 209......Page 0248
References 211......Page 0250
--- – OAM 213–214......Page 0252
--- – mechanical effects of light range 214–215......Page 0253
--- – creation of BECs 215–216......Page 0254
--- 216–218......Page 0255
--- – transfer efficiency 218–220......Page 0257
--- – nonrotating state measurement 220–222......Page 0259
--- – counterrotating state measurement 222......Page 0261
--- – measures the Doppler shift 223–224......Page 0262
--- 224–227......Page 0263
--- – of multilevel atomic condensates 227–228......Page 0266
--- – Zeeman shift due to bias field 228......Page 0267
supercurrents, in BEC 230–231......Page 0269
12.8 Conclusion 231......Page 0270
References 232......Page 0271
Index 237......Page 0275
unaberrated telescope 157......Page 0196
, 60......Page 102
--- 217......Page 256
--- – of photon 173......Page 0212
--- – transfer of OAM 55–56......Page 0097
--- Fresnel formulae 133......Page 0173
--- Pauli matrices 172......Page 0211
--- 52–53......Page 0094
white light vortices 56......Page 0098
--- Bell inequality 31......Page 0074
--- Bessel beams 4......Page 47
, 21......Page 64
, 109......Page 150
--- Boltzmann’s constant 136......Page 0176
--- Bose–Einstein condensation (BEC) 7......Page 50
, 37,......Page 79
--- Bragg scattering of the atoms 180......Page 0219
--- Rabi oscillations 216......Page 255
–217, 223–224......Page 262
--- – in Laguerre–Gaussian (LG) beams 17......Page 0060
refractive optical equivalent 5......Page 0048
, 222......Page 261
--- 28......Page 0071
--- Copyright ? 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim......Page 2049
--- ISBN: 978-3-527-40907-5......Page 1016
--- Parkin’s method of measuring torque 101......Page 0142
--- DDA–T-matrix software 112......Page 0153
diode-pumped solid-state laser 129......Page 0169
--- Dirac-like equations 171......Page 210
, 174......Page 213
system transfer matrix 104......Page 0145
--- ‘‘donut’’ mode pattern 18......Page 0061
--- Dove prisms 28......Page 71
, 30......Page 73
--- 42–43......Page 0084
vacuum, propagation of light in 47......Page 0089
plasmas, in Earth’s surroundings 167......Page 0206
electron–neutrino beam 168......Page 0207
--- 47......Page 89
, 49......Page 91
--- T-matrix 103–104......Page 0144
--- – blade angle, effect of 110......Page 0151
--- – hub radius, effect of 109–110......Page 0150
--- – torque efficiency 107–109......Page 0148
--- – ‘‘on-axis’’ and ‘‘off-axis’’ configuration 145......Page 0184
optical Fr?eedericksz transition (OFT) 69......Page 0110
--- – LG patterns 160......Page 0199
--- – polarization handedness 20......Page 0063
--- – forces in an optical vortex trap 54......Page 0096
optical vortices 5......Page 48
, 26–27......Page 69
, 52......Page 94
, 104......Page 145
--- TEM00 Gaussian beam 39......Page 0081
--- – high refractive index particles 58......Page 0100
--- Rankine vortices, 8......Page 0051
--- – laws of on–off intermittency in 88......Page 0129
, 27......Page 70
--- Kummer beams 161......Page 0200
--- Maxwell equations 2......Page 45
, 97......Page 138
, 214......Page 253
spatial light modulator 40......Page 0082
--- – in holographic optical vortex traps 60......Page 0102
--- – propeller 123–124......Page 0163
paraxial approximation 2......Page 0045
linear momentum density 3......Page 0046
nematic free energy 68......Page 0109
--- SISLS 87–88......Page 0128
lucky imaging 163......Page 0202
--- Weyl–Majorana equations 171......Page 0210
--- Maxwell’s stress tensor 45......Page 87
–48, 57......Page 99
--- – for monochromatic fields 48......Page 0090
--- – in fluid flow in micron-sized channels 59......Page 0101
--- Norland 81......Page 122
--- SU-8 photoresist 119......Page 159
, 128......Page 168
off-centered hole 221......Page 0260
, 40......Page 82
, 93......Page 134
optical tweezers 41......Page 83
–43, 51......Page 93
, 58......Page 100
, 95......Page 136
, 117......Page 157
optical tweezers toolbox 105......Page 146
, 112......Page 153
, 13......Page 56
, 17......Page 60
, 25......Page 68
--- – operation mode of 95–97......Page 0136
--- – possible designs for 94......Page 135
, 96......Page 137
--- – spin torque measurement 99......Page 0140
, 98......Page 139
, 101......Page 142
--- – in optical tweezers 6......Page 0049
--- – and resonant transition in an atom 7......Page 0050
--- – spin flow density 16......Page 0059
--- – total transverse energy flow 19......Page 0062
--- 156......Page 195
–158, 165–168......Page 204
--- Pockels cells 82–83......Page 0123
--- Poynting vector 3......Page 46
, 218......Page 257
--- 225......Page 0264
--- – two consecutive Raman processes 226......Page 0265
--- RS formalism 174–175......Page 0213
--- ‘‘seed’’ matter wave 229......Page 0268
spatial light modulators (SLMs) 67......Page 108
, 121,......Page 161
--- – point spread function (PSF) of 147......Page 0186
--- – helical phase pattern 147......Page 186
, 151......Page 190
–120, 129......Page 169
--- motion 137......Page 0177
zeroth-order Bessel modes 53......Page 0095
--- – integrated optical motor 130......Page 0170
--- – light driven micromachines 122–123......Page 0162
--- X–Y piezo-translator 119......Page 0159
Переход к каталогу библиотеки - файлу Catalog_Library.djvu......Page Catalog_Library.djvu