دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2nd ed. 2024] نویسندگان: Haukur Ingason, Ying Zhen Li, Anders Lönnermark سری: ISBN (شابک) : 3031539222, 9783031539220 ناشر: Springer سال نشر: 2024 تعداد صفحات: 597 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 Mb
در صورت تبدیل فایل کتاب Tunnel Fire Dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دینامیک آتش تونل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgement Contents Chapter 1: Introduction 1.1 Introduction 1.2 Characteristics of Tunnel Fires 1.3 Mitigation Systems in Tunnels 1.4 Incidents in Tunnel 1.4.1 Fires in Road Tunnels 1.4.2 Fires in Rail Tunnels 1.4.3 Fires in Metro Tunnels 1.5 Summary References Chapter 2: Fuel and Ventilation-Controlled Fires 2.1 Introduction 2.2 Fire Development in Building Fires 2.3 Fire Development in Tunnel Fires 2.4 Fuel or Ventilation Control in a Compartment Fire 2.5 Fuel or Ventilation Control in a Tunnel with Longitudinal Flow 2.5.1 Fuel Control 2.5.2 Ventilation Control 2.5.3 Determination of Combustion Mode 2.6 Effects of Vitiation on the Combustion Process 2.7 Summary References Chapter 3: Tunnel Fire Tests 3.1 Introduction 3.2 Overview of Large-Scale Tunnel Experiments 3.3 Large-Scale Tunnel Fire Tests 3.3.1 Ofenegg 1965 3.3.2 Glasgow 1970 3.3.3 The West Meon Tests in the Early 1970s 3.3.4 Zwenberg 1975 3.3.5 P.W.R.I. 1980 3.3.6 TUB-VTT Tests 1986 3.3.7 EUREKA EU499 Tests 1990-1992 3.3.8 Memorial Tunnel Tests 1993-1995 3.3.9 Shimizu No. 3 2001 3.3.10 Second Benelux Tests 2002 3.3.11 Runehamar 2003 3.3.12 METRO Tests 2011 3.3.13 Carleton University Laboratory Train Tests 2011 3.3.14 Singapore Tests 2011 3.3.15 Runehamar Test 2013 3.4 Model-Scale Fire Tests 3.4.1 The TNO Tests 3.4.2 Automatic Water Spray System Tests 3.4.3 Longitudinal Ventilation Tests 3.4.4 Point Extraction Ventilation Tests 3.4.5 Tunnel Cross Section Tests 3.5 Summary References Chapter 4: Heat Release Rates in Tunnels 4.1 Introduction 4.2 Measured HRR in Different Vehicles 4.2.1 Road Vehicles 4.2.1.1 Passenger Cars 4.2.1.2 Buses 4.2.1.3 Heavy Goods Vehicles 4.2.1.4 Tanker Fires 4.2.1.5 Pool Fires (Liquid) 4.2.1.6 Construction Vehicles 4.2.1.7 Rubber Tyres 4.2.2 Railway Rolling Stock 4.3 Parameters Influencing the HRR 4.3.1 Heat Feedback 4.3.2 Effects of Tunnel Geometry 4.3.3 Effects of Ventilation on Peak HRR 4.3.4 Fuel-Controlled Fires 4.3.5 Ventilation-Controlled Fires 4.4 HRR per Exposed Fuel Surface Area 4.4.1 Liquids 4.4.2 Solid Materials 4.4.3 Vehicle Fires 4.5 Jet Fires 4.6 Spilled Liquid Fires 4.7 HRR for Alternative Fuel Vehicles 4.8 Summary References Chapter 5: Fire Growth Rates in Tunnels 5.1 Introduction 5.2 Theory of Fire Growth Rate 5.2.1 Wind-Aided Spread 5.2.2 Relationship Between FGR and Flame Spread Rate 5.2.3 Fuels Consisting of Several Parts 5.3 Correlations for Fire Growth Rate 5.3.1 Comparison with Model-Scale Tests 5.3.2 Comparison with Full-Scale Tests 5.4 The Effects of Windbreaks on Fire Growth Rates 5.5 Summary References Chapter 6: Design Fire Curves 6.1 Introduction 6.2 Design Fire Methods 6.2.1 Constant Values for Design Fires 6.2.2 Time-Dependent Methods for Design Fires 6.3 Exponential Design Fire Curve Method with Superposition 6.3.1 Determination of Design Fire Scenarios 6.3.2 Maximum Heat Release Rate 6.3.3 Time to Maximum Heat Release Rate 6.3.4 Energy Content 6.3.5 Reconstruction of a Large-Scale Test 6.3.6 Design Fire for a Tram Carriage 6.3.7 Design Fire for a Road Vehicle 6.4 New Concept for Design Curves 6.4.1 Theoretical Aspects 6.4.2 Calculation 6.5 Summary References Chapter 7: Combustion Products from Fires 7.1 Introduction 7.2 Combustion and Fire Chemistry 7.3 Yields 7.4 Emissions from Fires in Vehicles and Tunnels 7.5 Emissions from Batteries and Electrical Vehicles 7.6 Contribution from Tunnel Asphalt Pavement 7.7 Effect of Ventilation Condition 7.8 Effect of Fire Suppression 7.9 Summary References Chapter 8: Gas Temperatures 8.1 Introduction 8.2 Interaction of Ventilation Flow with Fire Plume 8.3 Maximum Ceiling Gas Temperature 8.3.1 Fire Plume Mass Flow Rate in a Ventilated Flow 8.3.2 Maximum Ceiling Gas Temperature in a Small Fire 8.3.3 Maximum Ceiling Gas Temperature in a Large Fire 8.4 Position of Maximum Ceiling Gas Temperature 8.5 Ceiling Gas Temperature Distribution 8.5.1 Analytical Solution for Buoyant Flows Under Quiescent Conditions 8.5.2 Theoretical Analysis of Quasi-Steady Stratified Smoke Flows in the Upper Layer 8.5.3 Semiempirical Correlations for Applications 8.5.3.1 High Ventilation 8.5.3.2 Natural Ventilation or Low Ventilation 8.6 One-Dimensional Simple Model 8.7 Summary References Chapter 9: Flame Length 9.1 Introduction 9.2 Overview of Flame Length in Open and Enclosure Fires 9.3 Overview of Flame Length in Tunnel Fires 9.4 Flame Lengths in Tunnel Fires 9.4.1 Transition Between Low and High Ventilation Rate 9.4.2 Model of Flame Length in Tunnel Fires 9.4.3 Flame Length with High Ventilation Rate 9.4.4 Flame Length Under Low Ventilation Rate 9.5 Flame Lengths of Jet Fires 9.5.1 Heskestad´s Model 9.5.2 Delichatsios´ Model 9.5.3 Lowesmith et al.´s Model 9.5.4 Findings Related to Various Alternative Fuel Tanks 9.6 Summary References Chapter 10: Heat Flux and Thermal Resistance 10.1 Introduction 10.2 Convective Heat Transfer 10.2.1 Boundary Layer 10.2.2 Reynolds-Colburn Analogy 10.2.3 Forced Convection 10.2.4 Natural Convection 10.2.5 Gas Properties 10.3 Radiative Heat Transfer 10.3.1 Simplification in Engineering Application 10.3.2 View Factor 10.3.3 Radiation Among Multiple Surfaces 10.3.4 Absorbing, Emitting and Scattering Gas 10.4 Heat Conduction 10.4.1 Thermally Thin Materials 10.4.2 Thermally Thick Materials 10.4.2.1 First Boundary Condition 10.4.2.2 Second Boundary Condition 10.4.2.3 Third Boundary Condition 10.4.2.4 Fourth Boundary Condition 10.4.2.5 Complicated Boundary 10.5 Thermal Resistance 10.6 Heat Flux Measurement 10.7 Calculation of Heat Fluxes in Tunnel Fires 10.7.1 Exposed Tunnel Ceiling and Walls at Upper Layer 10.7.2 Heat Flux in Lower Layer 10.7.2.1 Horizontal and Vertical Object Surfaces View Factors in Tunnels 10.7.2.2 Inclined Target Surfaces 10.7.2.3 Radiation from Vertical Flames in Large Tunnel Fires 10.7.2.4 Verification of the Heat Flux Models in the Lower Layer 10.7.3 Flame Radiation in Small Tunnel Fires 10.7.4 Jet Flame Radiation 10.8 Summary References Chapter 11: Fire Spread 11.1 Introduction 11.2 Introduction to the Theory of Ignition 11.2.1 Solids 11.2.1.1 Effect of Velocity 11.2.2 Liquids 11.2.2.1 Release of Liquids 11.2.2.2 Flame Spread over a Liquid Surface 11.2.2.3 The Effect of Macadam 11.3 Fire Spread in Tunnels 11.4 Modelling of Fire Spread 11.5 Summary References Chapter 12: Smoke Stratification 12.1 Introduction 12.2 Phenomenon of Smoke Stratification 12.3 Mechanism of Smoke Stratification 12.3.1 Entrainment 12.3.2 Smoke Layer Height 12.4 Smoke Stratification in Tunnels with Natural or Low Ventilation 12.4.1 Early-Stage Smoke Spread Before Smoke Descends to Floor 12.4.2 Smoke Descent Along the Tunnel 12.5 Smoke Stratification in Tunnels with Longitudinal Ventilation 12.6 Summary References Chapter 13: Tunnel Fire Ventilation 13.1 Introduction 13.2 Normal Ventilation 13.2.1 Longitudinal Ventilation 13.2.2 Transverse Ventilation 13.2.3 Semi-transverse Ventilation 13.3 Longitudinal Fire Ventilation 13.3.1 Critical Velocity 13.3.1.1 Critical Froude Model 13.3.1.2 Non-dimensional Model 13.3.1.3 Influence of Vehicle Obstruction 13.3.1.4 Influence of Heat Release Rate in Large Fires 13.3.1.5 Influence of Tunnel Width 13.3.1.6 Critical Flame Angle 13.3.1.7 Short Summary 13.3.2 Backlayering Length 13.4 Smoke Extraction 13.4.1 Single-Point Extraction 13.4.2 Two-Point Extraction 13.4.3 Short Summary 13.5 Natural Fire Ventilation 13.5.1 Short Sloped Tunnels 13.5.2 Natural Ventilation Using Short Vertical Shafts 13.6 Cross-Passages 13.7 Rescue Station 13.7.1 Configuration and Function of Rescue Station 13.7.2 Smoke Control 13.7.3 Gas Temperature Beside the Door 13.7.4 Fireproof Door Height 13.8 A Simple Model of Longitudinal Flows 13.9 Summary References Chapter 14: Visibility 14.1 Introduction 14.2 Different Methods of Predicting Visibility 14.3 The Influence of Visibility on Egress 14.4 Summary References Chapter 15: Tenability 15.1 Introduction 15.2 Combustion Products Related to Toxicity 15.3 Toxicity 15.3.1 Asphyxiants 15.3.2 Irritants 15.4 Fractional Effective Dose (FED) 15.5 Fractional Effective Dose for Incapacitation 15.6 Large-Scale Example of Fraction of an Incapacitation Dose 15.7 Irritant Gas Model 15.8 Acceptance Criteria 15.9 Toxicity and Tenability in Connection with Batteries and Electric Vehicles 15.10 Summary References Chapter 16: Fire Suppression and Detection in Tunnels 16.1 Introduction 16.2 Basic Concepts of Fire Suppression Systems 16.2.1 Deluge Water Spray System 16.2.1.1 General Description 16.2.1.2 Specific Technical Information 16.2.2 Water Mist Systems 16.2.3 Automatic Sprinkler Systems 16.2.4 Foam Systems 16.2.5 Mode of Operation 16.3 Tunnel Fire Suppression Tests 16.3.1 Second Benelux 2000-2001 16.3.2 IF Tunnel, UPTUN 2002-2004 16.3.3 IF Tunnel, Marioff, 2004 16.3.4 VSH Hagerbach, Marioff, 2005 16.3.5 San Pedro de Anes Tests, Marioff, 2006 16.3.6 SINTEF Runehamar Tunnel 2007 16.3.7 SOLIT 2008 and SOLIT2 2012 16.3.8 Singapore Tests 2011-2012 16.3.9 SP Runehamar Tunnel Fire Suppression Tests 2013 16.3.10 RISE Runehamar Tunnel Fire Suppression Tests 2016 16.3.11 80 m Long Test Tunnel Fire Suppression Tests 2017 16.3.12 100 m Long Test Tunnel Fire Suppression Tests 2019 16.3.13 A Short Discussion 16.4 Theory of Fire Suppression 16.4.1 Extinguishment Mechanism 16.4.1.1 Surface Cooling 16.4.1.2 Gas Phase Cooling 16.4.1.3 Dilution Effects and Heat Capacity 16.4.1.4 Radiation Attenuation 16.4.1.5 Kinetic and Other Factors 16.4.2 Critical Conditions for Extinction 16.4.2.1 Condensed Phase Extinction 16.4.2.2 Gas Phase Extinction 16.4.3 Fire Suppression 16.4.3.1 Suppression of Gas and Pool Fires 16.4.3.2 Suppression of Solid Fuel Fires 16.4.4 A Short Discussion 16.5 Tunnel Fire Detection 16.5.1 Types of Fire Detection 16.5.2 Summary of Fire Detection Tests in Tunnels 16.5.2.1 Second Benelux Tunnel Fire Detection Tests, 2000/2001 16.5.2.2 Runehamar Tunnel Fire Detection Tests, 2007 16.5.2.3 Viger Tunnel Fire Detection Tests, 2007 16.5.2.4 SP Tunnel Fire Detection Tests in 2015 16.5.2.5 RISE Runehamar Tunnel Fire Detection Tests, 2018 16.5.3 A Short Discussion 16.6 Summary References Chapter 17: CFD Modelling of Tunnel Fires 17.1 Introduction 17.2 CFD Basics 17.2.1 Controlling Equations 17.2.2 Equation of State 17.2.3 Turbulence 17.2.3.1 Averaged Navier-Stokes Models 17.2.3.2 Large Eddy Simulation (LES) 17.2.3.3 Direct Numerical Simulation 17.2.4 Discretization Methods 17.2.4.1 Temporal Discretization 17.2.4.2 Spatial Discretization 17.2.5 Solution Algorithms 17.3 Sub-Models Related to Tunnel Fires 17.3.1 Gas Phase Combustion 17.3.2 Condensed Phase Pyrolysis 17.3.2.1 Solid Phase 17.3.2.2 Liquid Phase 17.3.3 Fire Suppression 17.3.4 Wall Function 17.3.5 Heat Transfer 17.3.5.1 Convective Heat Transfer 17.3.5.2 Radiation Heat Transfer 17.3.5.3 Heat Conduction 17.4 Recommendations for CFD Users 17.4.1 Computation Domain and Boundary Conditions 17.4.2 Fire Source 17.4.3 Grid Size 17.4.4 Verification of Modelling 17.5 Limitations of CFD Modelling 17.6 Summary References Chapter 18: Scaling Technique 18.1 Introduction 18.2 Methods of Obtaining Scaling Correlations 18.3 Classification of Scaling Techniques 18.3.1 Froude Scaling 18.3.2 Pressure Scaling 18.3.3 Analog Scaling (Cold Gas, Saltwater) 18.4 General Froude Scaling 18.5 Scaling of Heat Fluxes 18.5.1 Scaling of Convective Heat Transfer 18.5.2 Scaling of Radiative Heat Transfer 18.5.3 Scaling of Heat Conduction 18.5.3.1 Thermally Thick Materials 18.5.3.2 Thermally Thin Materials 18.5.4 Scaling of Heat Balance in an Enclosure 18.5.4.1 Heat Loss by Convection Through Vents 18.5.4.2 Heat Loss by Conduction into the Walls 18.5.4.3 Heat Loss by Radiation Through the Vents 18.5.4.4 Global Heat Balance in an Enclosure Fire 18.6 Scaling of Water Sprays 18.6.1 Single Droplet 18.6.2 Water Sprays 18.6.3 Radiation Absorbed by Water Sprays 18.6.4 Droplet Diameter 18.6.5 Surface Cooling 18.6.6 Automatic Sprinkler 18.7 Scaling of Combustible Materials 18.8 Scaling of Wood Pallet Fires 18.9 An Example of Scaling Application in Fire Safety Engineering 18.10 Summary References Chapter 19: Fire and Explosion Safety of Alternative Fuel Vehicles 19.1 Introduction 19.2 Fire Incidents Related to Alternative Fuel Vehicles 19.2.1 CNG Vehicles 19.2.2 LPG Vehicles 19.2.3 Battery Electric Vehicles 19.3 Fire Safety Aspects 19.3.1 Heat Release Rates and Design Fires 19.3.2 Fireball 19.4 Explosion Safety Aspects 19.4.1 Explosion in the Open 19.4.2 Difference Between Explosion in the Open and Explosion in a Tunnel 19.4.3 General Knowledge About Explosions in Tunnels 19.4.4 Compressed Gas Tank Rupture in a Tunnel 19.4.5 Liquefied Gas Tank Rupture in a Tunnel 19.4.6 Gas Cloud Explosion in a Tunnel 19.5 Summary References Index