ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Tunnel Fire Dynamics

دانلود کتاب دینامیک آتش تونل

Tunnel Fire Dynamics

مشخصات کتاب

Tunnel Fire Dynamics

ویرایش: [2nd ed. 2024] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 3031539222, 9783031539220 
ناشر: Springer 
سال نشر: 2024 
تعداد صفحات: 597 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 Mb 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Tunnel Fire Dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب دینامیک آتش تونل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Acknowledgement
Contents
Chapter 1: Introduction
	1.1 Introduction
	1.2 Characteristics of Tunnel Fires
	1.3 Mitigation Systems in Tunnels
	1.4 Incidents in Tunnel
		1.4.1 Fires in Road Tunnels
		1.4.2 Fires in Rail Tunnels
		1.4.3 Fires in Metro Tunnels
	1.5 Summary
	References
Chapter 2: Fuel and Ventilation-Controlled Fires
	2.1 Introduction
	2.2 Fire Development in Building Fires
	2.3 Fire Development in Tunnel Fires
	2.4 Fuel or Ventilation Control in a Compartment Fire
	2.5 Fuel or Ventilation Control in a Tunnel with Longitudinal Flow
		2.5.1 Fuel Control
		2.5.2 Ventilation Control
		2.5.3 Determination of Combustion Mode
	2.6 Effects of Vitiation on the Combustion Process
	2.7 Summary
	References
Chapter 3: Tunnel Fire Tests
	3.1 Introduction
	3.2 Overview of Large-Scale Tunnel Experiments
	3.3 Large-Scale Tunnel Fire Tests
		3.3.1 Ofenegg 1965
		3.3.2 Glasgow 1970
		3.3.3 The West Meon Tests in the Early 1970s
		3.3.4 Zwenberg 1975
		3.3.5 P.W.R.I. 1980
		3.3.6 TUB-VTT Tests 1986
		3.3.7 EUREKA EU499 Tests 1990-1992
		3.3.8 Memorial Tunnel Tests 1993-1995
		3.3.9 Shimizu No. 3 2001
		3.3.10 Second Benelux Tests 2002
		3.3.11 Runehamar 2003
		3.3.12 METRO Tests 2011
		3.3.13 Carleton University Laboratory Train Tests 2011
		3.3.14 Singapore Tests 2011
		3.3.15 Runehamar Test 2013
	3.4 Model-Scale Fire Tests
		3.4.1 The TNO Tests
		3.4.2 Automatic Water Spray System Tests
		3.4.3 Longitudinal Ventilation Tests
		3.4.4 Point Extraction Ventilation Tests
		3.4.5 Tunnel Cross Section Tests
	3.5 Summary
	References
Chapter 4: Heat Release Rates in Tunnels
	4.1 Introduction
	4.2 Measured HRR in Different Vehicles
		4.2.1 Road Vehicles
			4.2.1.1 Passenger Cars
			4.2.1.2 Buses
			4.2.1.3 Heavy Goods Vehicles
			4.2.1.4 Tanker Fires
			4.2.1.5 Pool Fires (Liquid)
			4.2.1.6 Construction Vehicles
			4.2.1.7 Rubber Tyres
		4.2.2 Railway Rolling Stock
	4.3 Parameters Influencing the HRR
		4.3.1 Heat Feedback
		4.3.2 Effects of Tunnel Geometry
		4.3.3 Effects of Ventilation on Peak HRR
		4.3.4 Fuel-Controlled Fires
		4.3.5 Ventilation-Controlled Fires
	4.4 HRR per Exposed Fuel Surface Area
		4.4.1 Liquids
		4.4.2 Solid Materials
		4.4.3 Vehicle Fires
	4.5 Jet Fires
	4.6 Spilled Liquid Fires
	4.7 HRR for Alternative Fuel Vehicles
	4.8 Summary
	References
Chapter 5: Fire Growth Rates in Tunnels
	5.1 Introduction
	5.2 Theory of Fire Growth Rate
		5.2.1 Wind-Aided Spread
		5.2.2 Relationship Between FGR and Flame Spread Rate
		5.2.3 Fuels Consisting of Several Parts
	5.3 Correlations for Fire Growth Rate
		5.3.1 Comparison with Model-Scale Tests
		5.3.2 Comparison with Full-Scale Tests
	5.4 The Effects of Windbreaks on Fire Growth Rates
	5.5 Summary
	References
Chapter 6: Design Fire Curves
	6.1 Introduction
	6.2 Design Fire Methods
		6.2.1 Constant Values for Design Fires
		6.2.2 Time-Dependent Methods for Design Fires
	6.3 Exponential Design Fire Curve Method with Superposition
		6.3.1 Determination of Design Fire Scenarios
		6.3.2 Maximum Heat Release Rate
		6.3.3 Time to Maximum Heat Release Rate
		6.3.4 Energy Content
		6.3.5 Reconstruction of a Large-Scale Test
		6.3.6 Design Fire for a Tram Carriage
		6.3.7 Design Fire for a Road Vehicle
	6.4 New Concept for Design Curves
		6.4.1 Theoretical Aspects
		6.4.2 Calculation
	6.5 Summary
	References
Chapter 7: Combustion Products from Fires
	7.1 Introduction
	7.2 Combustion and Fire Chemistry
	7.3 Yields
	7.4 Emissions from Fires in Vehicles and Tunnels
	7.5 Emissions from Batteries and Electrical Vehicles
	7.6 Contribution from Tunnel Asphalt Pavement
	7.7 Effect of Ventilation Condition
	7.8 Effect of Fire Suppression
	7.9 Summary
	References
Chapter 8: Gas Temperatures
	8.1 Introduction
	8.2 Interaction of Ventilation Flow with Fire Plume
	8.3 Maximum Ceiling Gas Temperature
		8.3.1 Fire Plume Mass Flow Rate in a Ventilated Flow
		8.3.2 Maximum Ceiling Gas Temperature in a Small Fire
		8.3.3 Maximum Ceiling Gas Temperature in a Large Fire
	8.4 Position of Maximum Ceiling Gas Temperature
	8.5 Ceiling Gas Temperature Distribution
		8.5.1 Analytical Solution for Buoyant Flows Under Quiescent Conditions
		8.5.2 Theoretical Analysis of Quasi-Steady Stratified Smoke Flows in the Upper Layer
		8.5.3 Semiempirical Correlations for Applications
			8.5.3.1 High Ventilation
			8.5.3.2 Natural Ventilation or Low Ventilation
	8.6 One-Dimensional Simple Model
	8.7 Summary
	References
Chapter 9: Flame Length
	9.1 Introduction
	9.2 Overview of Flame Length in Open and Enclosure Fires
	9.3 Overview of Flame Length in Tunnel Fires
	9.4 Flame Lengths in Tunnel Fires
		9.4.1 Transition Between Low and High Ventilation Rate
		9.4.2 Model of Flame Length in Tunnel Fires
		9.4.3 Flame Length with High Ventilation Rate
		9.4.4 Flame Length Under Low Ventilation Rate
	9.5 Flame Lengths of Jet Fires
		9.5.1 Heskestad´s Model
		9.5.2 Delichatsios´ Model
		9.5.3 Lowesmith et al.´s Model
		9.5.4 Findings Related to Various Alternative Fuel Tanks
	9.6 Summary
	References
Chapter 10: Heat Flux and Thermal Resistance
	10.1 Introduction
	10.2 Convective Heat Transfer
		10.2.1 Boundary Layer
		10.2.2 Reynolds-Colburn Analogy
		10.2.3 Forced Convection
		10.2.4 Natural Convection
		10.2.5 Gas Properties
	10.3 Radiative Heat Transfer
		10.3.1 Simplification in Engineering Application
		10.3.2 View Factor
		10.3.3 Radiation Among Multiple Surfaces
		10.3.4 Absorbing, Emitting and Scattering Gas
	10.4 Heat Conduction
		10.4.1 Thermally Thin Materials
		10.4.2 Thermally Thick Materials
			10.4.2.1 First Boundary Condition
			10.4.2.2 Second Boundary Condition
			10.4.2.3 Third Boundary Condition
			10.4.2.4 Fourth Boundary Condition
			10.4.2.5 Complicated Boundary
	10.5 Thermal Resistance
	10.6 Heat Flux Measurement
	10.7 Calculation of Heat Fluxes in Tunnel Fires
		10.7.1 Exposed Tunnel Ceiling and Walls at Upper Layer
		10.7.2 Heat Flux in Lower Layer
			10.7.2.1 Horizontal and Vertical Object Surfaces
				View Factors in Tunnels
			10.7.2.2 Inclined Target Surfaces
			10.7.2.3 Radiation from Vertical Flames in Large Tunnel Fires
			10.7.2.4 Verification of the Heat Flux Models in the Lower Layer
		10.7.3 Flame Radiation in Small Tunnel Fires
		10.7.4 Jet Flame Radiation
	10.8 Summary
	References
Chapter 11: Fire Spread
	11.1 Introduction
	11.2 Introduction to the Theory of Ignition
		11.2.1 Solids
			11.2.1.1 Effect of Velocity
		11.2.2 Liquids
			11.2.2.1 Release of Liquids
			11.2.2.2 Flame Spread over a Liquid Surface
			11.2.2.3 The Effect of Macadam
	11.3 Fire Spread in Tunnels
	11.4 Modelling of Fire Spread
	11.5 Summary
	References
Chapter 12: Smoke Stratification
	12.1 Introduction
	12.2 Phenomenon of Smoke Stratification
	12.3 Mechanism of Smoke Stratification
		12.3.1 Entrainment
		12.3.2 Smoke Layer Height
	12.4 Smoke Stratification in Tunnels with Natural or Low Ventilation
		12.4.1 Early-Stage Smoke Spread Before Smoke Descends to Floor
		12.4.2 Smoke Descent Along the Tunnel
	12.5 Smoke Stratification in Tunnels with Longitudinal Ventilation
	12.6 Summary
	References
Chapter 13: Tunnel Fire Ventilation
	13.1 Introduction
	13.2 Normal Ventilation
		13.2.1 Longitudinal Ventilation
		13.2.2 Transverse Ventilation
		13.2.3 Semi-transverse Ventilation
	13.3 Longitudinal Fire Ventilation
		13.3.1 Critical Velocity
			13.3.1.1 Critical Froude Model
			13.3.1.2 Non-dimensional Model
			13.3.1.3 Influence of Vehicle Obstruction
			13.3.1.4 Influence of Heat Release Rate in Large Fires
			13.3.1.5 Influence of Tunnel Width
			13.3.1.6 Critical Flame Angle
			13.3.1.7 Short Summary
		13.3.2 Backlayering Length
	13.4 Smoke Extraction
		13.4.1 Single-Point Extraction
		13.4.2 Two-Point Extraction
		13.4.3 Short Summary
	13.5 Natural Fire Ventilation
		13.5.1 Short Sloped Tunnels
		13.5.2 Natural Ventilation Using Short Vertical Shafts
	13.6 Cross-Passages
	13.7 Rescue Station
		13.7.1 Configuration and Function of Rescue Station
		13.7.2 Smoke Control
		13.7.3 Gas Temperature Beside the Door
		13.7.4 Fireproof Door Height
	13.8 A Simple Model of Longitudinal Flows
	13.9 Summary
	References
Chapter 14: Visibility
	14.1 Introduction
	14.2 Different Methods of Predicting Visibility
	14.3 The Influence of Visibility on Egress
	14.4 Summary
	References
Chapter 15: Tenability
	15.1 Introduction
	15.2 Combustion Products Related to Toxicity
	15.3 Toxicity
		15.3.1 Asphyxiants
		15.3.2 Irritants
	15.4 Fractional Effective Dose (FED)
	15.5 Fractional Effective Dose for Incapacitation
	15.6 Large-Scale Example of Fraction of an Incapacitation Dose
	15.7 Irritant Gas Model
	15.8 Acceptance Criteria
	15.9 Toxicity and Tenability in Connection with Batteries and Electric Vehicles
	15.10 Summary
	References
Chapter 16: Fire Suppression and Detection in Tunnels
	16.1 Introduction
	16.2 Basic Concepts of Fire Suppression Systems
		16.2.1 Deluge Water Spray System
			16.2.1.1 General Description
			16.2.1.2 Specific Technical Information
		16.2.2 Water Mist Systems
		16.2.3 Automatic Sprinkler Systems
		16.2.4 Foam Systems
		16.2.5 Mode of Operation
	16.3 Tunnel Fire Suppression Tests
		16.3.1 Second Benelux 2000-2001
		16.3.2 IF Tunnel, UPTUN 2002-2004
		16.3.3 IF Tunnel, Marioff, 2004
		16.3.4 VSH Hagerbach, Marioff, 2005
		16.3.5 San Pedro de Anes Tests, Marioff, 2006
		16.3.6 SINTEF Runehamar Tunnel 2007
		16.3.7 SOLIT 2008 and SOLIT2 2012
		16.3.8 Singapore Tests 2011-2012
		16.3.9 SP Runehamar Tunnel Fire Suppression Tests 2013
		16.3.10 RISE Runehamar Tunnel Fire Suppression Tests 2016
		16.3.11 80 m Long Test Tunnel Fire Suppression Tests 2017
		16.3.12 100 m Long Test Tunnel Fire Suppression Tests 2019
		16.3.13 A Short Discussion
	16.4 Theory of Fire Suppression
		16.4.1 Extinguishment Mechanism
			16.4.1.1 Surface Cooling
			16.4.1.2 Gas Phase Cooling
			16.4.1.3 Dilution Effects and Heat Capacity
			16.4.1.4 Radiation Attenuation
			16.4.1.5 Kinetic and Other Factors
		16.4.2 Critical Conditions for Extinction
			16.4.2.1 Condensed Phase Extinction
			16.4.2.2 Gas Phase Extinction
		16.4.3 Fire Suppression
			16.4.3.1 Suppression of Gas and Pool Fires
			16.4.3.2 Suppression of Solid Fuel Fires
		16.4.4 A Short Discussion
	16.5 Tunnel Fire Detection
		16.5.1 Types of Fire Detection
		16.5.2 Summary of Fire Detection Tests in Tunnels
			16.5.2.1 Second Benelux Tunnel Fire Detection Tests, 2000/2001
			16.5.2.2 Runehamar Tunnel Fire Detection Tests, 2007
			16.5.2.3 Viger Tunnel Fire Detection Tests, 2007
			16.5.2.4 SP Tunnel Fire Detection Tests in 2015
			16.5.2.5 RISE Runehamar Tunnel Fire Detection Tests, 2018
		16.5.3 A Short Discussion
	16.6 Summary
	References
Chapter 17: CFD Modelling of Tunnel Fires
	17.1 Introduction
	17.2 CFD Basics
		17.2.1 Controlling Equations
		17.2.2 Equation of State
		17.2.3 Turbulence
			17.2.3.1 Averaged Navier-Stokes Models
			17.2.3.2 Large Eddy Simulation (LES)
			17.2.3.3 Direct Numerical Simulation
		17.2.4 Discretization Methods
			17.2.4.1 Temporal Discretization
			17.2.4.2 Spatial Discretization
		17.2.5 Solution Algorithms
	17.3 Sub-Models Related to Tunnel Fires
		17.3.1 Gas Phase Combustion
		17.3.2 Condensed Phase Pyrolysis
			17.3.2.1 Solid Phase
			17.3.2.2 Liquid Phase
		17.3.3 Fire Suppression
		17.3.4 Wall Function
		17.3.5 Heat Transfer
			17.3.5.1 Convective Heat Transfer
			17.3.5.2 Radiation Heat Transfer
			17.3.5.3 Heat Conduction
	17.4 Recommendations for CFD Users
		17.4.1 Computation Domain and Boundary Conditions
		17.4.2 Fire Source
		17.4.3 Grid Size
		17.4.4 Verification of Modelling
	17.5 Limitations of CFD Modelling
	17.6 Summary
	References
Chapter 18: Scaling Technique
	18.1 Introduction
	18.2 Methods of Obtaining Scaling Correlations
	18.3 Classification of Scaling Techniques
		18.3.1 Froude Scaling
		18.3.2 Pressure Scaling
		18.3.3 Analog Scaling (Cold Gas, Saltwater)
	18.4 General Froude Scaling
	18.5 Scaling of Heat Fluxes
		18.5.1 Scaling of Convective Heat Transfer
		18.5.2 Scaling of Radiative Heat Transfer
		18.5.3 Scaling of Heat Conduction
			18.5.3.1 Thermally Thick Materials
			18.5.3.2 Thermally Thin Materials
		18.5.4 Scaling of Heat Balance in an Enclosure
			18.5.4.1 Heat Loss by Convection Through Vents
			18.5.4.2 Heat Loss by Conduction into the Walls
			18.5.4.3 Heat Loss by Radiation Through the Vents
			18.5.4.4 Global Heat Balance in an Enclosure Fire
	18.6 Scaling of Water Sprays
		18.6.1 Single Droplet
		18.6.2 Water Sprays
		18.6.3 Radiation Absorbed by Water Sprays
		18.6.4 Droplet Diameter
		18.6.5 Surface Cooling
		18.6.6 Automatic Sprinkler
	18.7 Scaling of Combustible Materials
	18.8 Scaling of Wood Pallet Fires
	18.9 An Example of Scaling Application in Fire Safety Engineering
	18.10 Summary
	References
Chapter 19: Fire and Explosion Safety of Alternative Fuel Vehicles
	19.1 Introduction
	19.2 Fire Incidents Related to Alternative Fuel Vehicles
		19.2.1 CNG Vehicles
		19.2.2 LPG Vehicles
		19.2.3 Battery Electric Vehicles
	19.3 Fire Safety Aspects
		19.3.1 Heat Release Rates and Design Fires
		19.3.2 Fireball
	19.4 Explosion Safety Aspects
		19.4.1 Explosion in the Open
		19.4.2 Difference Between Explosion in the Open and Explosion in a Tunnel
		19.4.3 General Knowledge About Explosions in Tunnels
		19.4.4 Compressed Gas Tank Rupture in a Tunnel
		19.4.5 Liquefied Gas Tank Rupture in a Tunnel
		19.4.6 Gas Cloud Explosion in a Tunnel
	19.5 Summary
	References
Index




نظرات کاربران