دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Catalin I. Pruncu (editor), Amit Aherwar (editor), Stanislav Gorb (editor) سری: ISBN (شابک) : 0367493942, 9780367493943 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 272 [265] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 Mb
در صورت تبدیل فایل کتاب Tribology and Surface Engineering for Industrial Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تریبولوژی و مهندسی سطح برای کاربردهای صنعتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تریبولوژی یک علم چند رشته ای است که شامل مهندسی مکانیک، علم مواد، مهندسی سطح، روان کننده ها و شیمی مواد افزودنی با کاربردهای فوق العاده است. تریبولوژی و مهندسی سطح برای کاربردهای صنعتی آخرین مورد در تریبولوژی و مهندسی سطح برای کاربردهای صنعتی را مورد بحث قرار می دهد.
این کتاب:
p>
این کتاب که برای محققان و دانشجویان پیشرفته نوشته شده است، دیدگاه گسترده ای از آخرین کاربردهای صنعتی تریبولوژی و مهندسی سطح برای انواع رشته های بین رشته ای را در بر می گیرد. برنامه های کاربردی.
Tribology is a multidisciplinary science that encompasses mechanical engineering, materials science, surface engineering, lubricants, and additives chemistry with tremendous applications. Tribology and Surface Engineering for Industrial Applications discusses the latest in tribology and surface engineering for industrial applications.
This book:
Written for researchers and advanced students, this book encompasses a wide-ranging view of the latest in industrial applications of tribology and surface engineering for a variety of cross-disciplinary applications.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Mechanical and Sliding Wear Performance of AA2024-AlN/Si[sub(3)] N[sub(4)] Hybrid Alloy Composites Using Preference Selection Index Method 1.1 Introduction 1.2 Experimental Details and Methodology 1.2.1 Materials, Design Aspects, and Fabrication Procedure 1.2.2 Physical, Mechanical, Thermal Conductivity, and Fracture Toughness Characterization 1.2.3 Dry Sliding Wear Tribometer 1.2.4 PSI Method and Taguchi Design of Experiment Optimization 1.2.5 Surface Morphology Studies 1.3 Results and Discussion 1.3.1 Physical, Mechanical, Thermal Conductivity, and Fracture Toughness Analysis 1.3.2 Analysis Using PSI Method and Taguchi Design of Experiment Optimization 1.3.3 Steady-State-Specific Wear Rate and Coefficient-of-Friction Analysis 1.3.4 Worn Surface Micrograph Analysis 1.4 Conclusions Acknowledgments References Chapter 2 Wear Properties of UHMWPE: A Case Study of Gas Spring 2.1 Introduction 2.2 Tribological Properties of UHMWPE 2.3 A Case Study: Wear Deformation on UHMWPE Piston Head in a Gas Spring 2.4 Wear Tests for UHMWPE 2.5 Conclusions References Chapter 3 Tribology of Spray-Formed Aluminum Alloys and Their Composites 3.1 Introduction 3.2 Wear and Friction Behavior 3.2.1 Test Operating Parameters 3.2.1.1 Effect of Sliding Distance 3.2.1.2 Effect of Normal Load 3.2.1.3 Effect of Sliding Speed 3.2.2 Material Parameters 3.2.2.1 Effect of Hardness 3.2.2.2 Effect of Multiple Reinforcements 3.2.2.3 Amount of Reinforcement Particles 3.2.2.4 Effect of Solid Lubricant 3.2.2.5 Effect of Porosity 3.2.3 Physical Parameters 3.2.3.1 Effect of Environment 3.2.3.2 Effect of Temperature 3.2.4 Other Parameters 3.2.4.1 Effect of Warm Rolling 3.2.4.2 Effect of Hot Pressing 3.2.4.3 Effect of Surface Treatment 3.2.4.4 Effect of Fabrication Process 3.2.4.5 Effect of Process Variables 3.3 Summary References Chapter 4 Ranking Analysis and Parametric Optimization of ZA27-SiC-Gr Alloy Composites Based on Mechanical and Sliding Wear Performance 4.1 Introduction 4.2 Materials and Methodology 4.2.1 Material, Design Aspects, and Fabrication of ZA27-SiC-Gr Alloy Composites 4.2.2 Physical and Mechanical Characterization 4.2.3 Dry Sliding Wear Tribometer 4.2.4 Taguchi Design of Experiment Optimization 4.2.5 Surface Morphology Studies 4.2.6 Hybrid AHP-TOPSIS Ranking Optimization Method 4.3 Results and Discussion 4.3.1 Physical and Mechanical Characterizations 4.3.2 Taguchi Analysis 4.3.3 Steady-State Wear/Friction Analysis (Effect of Sliding Distance) 4.3.4 Worn Surface Damage Analysis 4.3.5 Hybrid AHP-TOPSIS Ranking Optimization 4.4 Conclusion Acknowledgments References Chapter 5 Surface Texture Properties and Tribological Behavior of Additive Manufactured Parts 5.1 Introduction 5.2 Additive Manufactured Surfaces 5.2.1 Additive Manufacturing Processes 5.2.2 Surface Post-Processing of AM Parts 5.2.2.1 Abrasive Blasting 5.2.2.2 Shot Peening 5.2.2.3 Polishing 5.2.2.4 Laser-Assisted Surface Finishing 5.2.2.5 Ultrasonic-Assisted Machining 5.2.2.6 Precision Grinding 5.2.2.7 Magnetic Field-Assisted Finishing 5.2.2.8 Chemical Post-Processing 5.2.3 Surface Texture Parameters and Their Effects on Tribological Behavior 5.2.3.1 Arithmetic Mean Deviation 5.2.3.2 Root Mean Square Height 5.2.3.3 Maximum Height of Profile 5.2.3.4 Skewness 5.2.3.5 Kurtosis 5.2.3.6 Mean Width of the Profile Elements 5.2.3.7 Material Ratio of the Profile 5.2.4 Additive Manufacturing Surfaces and Their Tribological Properties 5.3 Conclusion and Future Remarks References Chapter 6 Wear and Corrosion of Wind Turbines 6.1 Introduction 6.2 Components of Wind Turbines 6.3 Materials Used for Wind Turbine Components 6.3.1 Tower and Foundation 6.3.2 Nacelle, Gearbox, and the Rotor Hub 6.3.3 Rotor Blades 6.4 Tribological Failure Analysis of Wind Turbine Components 6.4.1 Vibration-Based Monitoring (Focus on Bearing Failure) 6.4.2 Oil Debris-Based Monitoring (Deterioration of Lubricant) 6.4.3 Blade Monitoring 6.5 Corrosion Aspects of Wind Turbines 6.5.1 Various Forms of Corrosion Occurring in Wind Turbine 6.5.2 Corrosion Protection 6.5.2.1 Active Corrosion Protection: Cathodic Corrosion Protection (CCP) 6.5.2.2 Passive Corrosion Protection 6.6 Corrosion Testing 6.6.1 Field Test 6.6.2 Laboratory Tests under Defined Artificial Stress Conditions 6.7 Conclusion and Future Work References Chapter 7 Surface Texturing Practices to Improve the Wear Behavior of Cutting Tools for Machining of Super Alloys 7.1 Introduction 7.2 Surface Texturing 7.3 Machining of Super Alloys Using Textured Tools 7.3.1 Inconel 718 and Ti6Al4V 7.4 Laser Surface Texturing (LST) 7.4.1 Influential Factors 7.4.2 Texturing Methodology 7.4.3 Texture Optimization 7.4.4 Tribology of Textured Surfaces 7.5 Conclusions 7.6 Future Scope References Chapter 8 Surface Engineering: Coatings and Surface Diagnostics 8.1 Introduction 8.1.1 Surface Engineering 8.1.2 Importance of Surface Engineering 8.2 Classification of Surface Engineering Processes 8.2.1 Microstructural Modification 8.2.1.1 Surface Transformation Hardening 8.2.1.2 Surface Melting 8.2.1.3 Shot Peening 8.3 Compositional Modification (Coating Deposition) 8.3.1 Electrochemical Methods 8.3.2 Conversion Coating 8.3.3 Hot Dipping 8.3.4 Vapor Deposition 8.3.5 Thermal Spraying 8.4 Surface Characterization 8.4.1 X-Ray Photoelectron Spectroscopy 8.4.1.1 Principle 8.4.2 Atomic Force Microscopy 8.4.3 Nanoindentation 8.5 Summary 8.6 Future Work References Chapter 9 Surface Coatings for Automotive Applications 9.1 Background and Introduction 9.2 Surface Coatings for Cutting Tools 9.3 Surface Coating Materials and Techniques 9.4 Methods of Coating the Surface 9.4.1 Gaseous State Processes 9.4.1.1 Applications of CVD Coatings 9.4.1.2 Applications of PVD Coatings 9.4.2 Molten and Semi-Molten State Processes 9.4.2.1 Laser Surface Treatments 9.4.2.2 Thermal-Sprayed Coatings 9.5 Recent Advances in Surface Coatings for Automotive Applications 9.6 Conclusions and Future Works References Chapter 10 Tribology Aspects in Manufacturing Processes 10.1 Introduction 10.1.1 Metal Working Operations 10.2 Role of Tribology in Metal Working 10.3 Role of Tribology in Industry 10.3.1 Fundamentals of Tribology 10.4 Classification of Metal Working Fluids 10.4.1 Formulation of Lubricant (Liquid (Oil-Based or Water-Based, Semi-Solid and Solid or Dry) 10.4.2 Manufacturing Process Adopted (Cutting Fluid, Grinding Fluid or Forming Fluid) 10.4.3 Quantity of Fluid 10.4.4 Additives for Lubricants 10.5 Wear 10.5.1 Wear during Cold Forming 10.5.2 Wear during Hot Forming 10.6 Tribology at High Temperature 10.6.1 Oxidation at High Temperature and Its Effect on Tribology Behaviour 10.6.2 Surface Coating and Their Tribological Behaviour 10.6.3 Lubrication at Elevated Temperature 10.6.4 Testing method (That Is Tribometers in Metal Forming at Elevated Temperature) 10.7 Test to Stimulate Hot Working Processes 10.7.1 Ring Compression Test 10.7.2 Block on Cylinder Test 10.8 Summary References Chapter 11 Electroless Coating Technique, Properties, and Applications 11.1 Introduction 11.2 Electroless Coating Technology 11.3 Process Mechanism for Electroless Coatings 11.4 Role of Individual Components in the Electroless Bath 11.4.1 Source of Nickel Ions 11.4.2 Reducing Agents 11.4.3 Complexing Agents 11.4.4 Accelerator 11.4.5 Other Process Parameter 11.5 Types of Electroless Coatings 11.5.1 Metallic Coatings 11.5.2 Electroless Nickel Alloy Coatings (e.g., Ni-P and Ni-B Alloys Deposits) 11.6 Electroless Nickel Composite Coatings 11.7 Inclusion of Second-Phase (X) Particles into Ni-P Matrix 11.8 Properties and Applications of Electroless Coatings 11.9 Summary References Index