دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Zhong-Ping Jiang, Christophe Prieur, Alessandro Astolfi سری: Lecture Notes in Control and Information Sciences ISBN (شابک) : 3030746275, 9783030746278 ناشر: Springer سال نشر: 2021 تعداد صفحات: 290 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Trends in Nonlinear and Adaptive Control: A Tribute to Laurent Praly for his 65th Birthday به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روندهای کنترل غیرخطی و تطبیقی: ادای احترام به لوران پرالی برای تولد 65 سالگی او نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب که به افتخار پروفسور لوران پرالی به مناسبت شصت و پنجمین سالگرد تولد او منتشر شد، پاسخهای برخی از مقامات بینالمللی پیشرو به چالشهای جدید در کنترل غیرخطی و تطبیقی را بررسی میکند. کاهش اثرات عدم قطعیت و غیرخطی - ویژگیهای همهجای مهندسی دنیای واقعی و سیستمهای طبیعی - بر پایداری و استحکام حلقه بسته از اهمیت حیاتی برخوردار است، مشارکتها آخرین تحقیقات را برای غلبه بر این مشکلات گزارش میکنند:
< p>
روندها در کنترل غیرخطی و تطبیقی تحقیقی را ارائه میکند که الهام گرفته از مشارکت پروفسور پرالی در طول عمر تئوری کنترل و مرتبط با آن است و افزودهای ارزشمند به ادبیات کنترل پیشرفته است.
This book, published in honor of Professor Laurent Praly on the occasion of his 65th birthday, explores the responses of some leading international authorities to new challenges in nonlinear and adaptive control. The mitigation of the effects of uncertainty and nonlinearity – ubiquitous features of real-world engineering and natural systems – on closed-loop stability and robustness being of crucial importance, the contributions report the latest research into overcoming these difficulties in:
Trends in Nonlinear and Adaptive Control presents research inspired by and related to Professor Praly’s lifetime of contributions to control theory and is a valuable addition to the literature of advanced control.
Preface Contents 1 Almost Feedback Linearization via Dynamic Extension: a Paradigm for Robust Semiglobal Stabilization of Nonlinear MIMO Systems 1.1 Foreword 1.2 Invertibility and Feedback Linearization 1.3 Normal Forms of Uniformly Invertible Nonlinear Systems 1.3.1 Normal Forms 1.3.2 Strongly Minimum-Phase Systems 1.4 Robust (Semiglobal) Stabilization via Almost Feedback Linearization 1.4.1 Standing Assumptions 1.4.2 The Nominal Linearizing Feedback 1.4.3 Robust Feedback Design 1.5 Application to the Problem of Output Regulation 1.6 An Illustrative Example References 2 Continuous-Time Implementation of Reset Control Systems 2.1 Introduction 2.2 Objective and Primary Assumption 2.3 Continuous-Time Implementation and Main Result 2.4 Examples and Simulations 2.4.1 Example 2.1 Revisited 2.4.2 A Clegg Integrator Controlling a Single Integrator System 2.4.3 A Bank of Clegg Integrators Controlling a Strictly Passive System 2.4.4 A Bank of Stable FOREs Controlling a Detectable Passive System 2.5 Conclusion References 3 On the Role of Well-Posedness in Homotopy Methods for the Stability Analysis of Nonlinear Feedback Systems 3.1 Introduction 3.2 Signal Spaces 3.2.1 Examples of Signal Spaces 3.2.2 Composite Signals 3.3 Systems, Controllability, and Causality 3.3.1 Controllability 3.3.2 Input/Output Systems, Causality, and Hemicontinuity 3.4 Stability and Gain of IO Systems 3.4.1 Finite-Gain Stability 3.4.2 Relationships Between Gain, Small-Signal Gain, and Norm Gain 3.4.3 Stability Robustness in the Gap Topology 3.4.4 Stability via Homotopy 3.5 Stability of Interconnections 3.5.1 Well-Posed Interconnections 3.5.2 Regular Systems 3.5.3 Integral Quadratic Constraints 3.6 Summary 3.7 Appendix References 4 Design of Heterogeneous Multi-agent System for Distributed Computation 4.1 Introduction 4.2 Strong Diffusive State Coupling 4.2.1 Finding the Number of Agents Participating in the Network 4.2.2 Distributed Least-Squares Solver 4.2.3 Distributed Median Solver 4.2.4 Distributed Optimization: Optimal Power Dispatch 4.3 Strong Diffusive Output Coupling 4.3.1 Synchronization of Heterogeneous Liénard Systems 4.3.2 Distributed State Estimation 4.4 General Description of Blended Dynamics 4.4.1 Distributed State Observer with Rank-Deficient Coupling 4.5 Robustness of Emergent Collective Behavior 4.6 More than Linear Coupling 4.6.1 Edge-Wise Funnel Coupling 4.6.2 Node-Wise Funnel Coupling References 5 Contributions to the Problem of High-Gain Observer Design for Hyperbolic Systems 5.1 Introduction 5.2 Problem Description and Solutions 5.2.1 Triangular Form for Observer Design 5.2.2 The High-Gain Observer Design Problem 5.3 Observer Design for Systems with a Single Velocity 5.3.1 Problem Statement and Requirements 5.3.2 Direct Solvability of the H-GODP 5.4 Observer Design for Systems with Distinct Velocities 5.4.1 System Requirements and Main Approach 5.4.2 Indirect Solvability of the H-GODP 5.5 Conclusion References 6 Robust Adaptive Disturbance Attenuation 6.1 Introduction 6.2 Problem Formulation and Objectives 6.2.1 Preliminaries and Notation 6.3 Known Stable Plants: SISO Systems 6.3.1 Discrete-Time Systems 6.3.2 Continuous-Time Systems 6.4 Known Stable Plants: MIMO Systems 6.4.1 Discrete-Time Systems 6.4.2 Continuous-Time Systems 6.5 Unknown Minimum-Phase Plants: SISO Systems 6.5.1 Non-adaptive Case: Known Plant and Known Disturbance Frequencies 6.5.2 Adaptive Case: Unknown Plant and Unknown Disturbance 6.6 Numerical Simulation 6.6.1 SISO Discrete-Time Systems with Known Plant Model 6.6.2 SISO Continuous-Time Systems with Known Plant Model 6.6.3 MIMO Discrete-Time Systems with Known Plant Model 6.6.4 SISO Discrete-Time Systems with Unknown Plant Model 6.7 Conclusion References 7 Delay-Adaptive Observer-Based Control for Linear Systems with Unknown Input Delays 7.1 Introduction 7.1.1 Adaptive Control for Time-Delay Systems and PDEs 7.1.2 Results in This Chapter: Adaptive Control for Uncertain Linear Systems with Input Delays 7.2 Adaptive Control for Linear Systems with Discrete Input Delays 7.2.1 Global Stabilization under Uncertain Plant State 7.2.2 Global Stabilization Under Uncertain Delay 7.2.3 Local Stabilization Under Uncertain Delay and Actuator State 7.3 Observer-Based Adaptive Control for Linear Systems with Discrete Input Delays 7.4 Adaptive Control for Linear Systems with Distributed Input Delays 7.5 Beyond the Results Given Here References 8 Adaptive Control for Systems with Time-Varying Parameters—A Survey 8.1 Introduction 8.2 Motivating Examples and Preliminary Result 8.2.1 Parameter in the Feedback Path 8.2.2 Parameter in the Input Path 8.2.3 Preliminary Result: State-Feedback Design for Unmatched Parameters 8.3 Output-Feedback Design 8.3.1 System Reparameterization 8.3.2 Inverse Dynamics 8.3.3 Filter Design 8.3.4 Controller Design 8.4 Simulations 8.5 Conclusions References 9 Robust Reinforcement Learning for Stochastic Linear Quadratic Control with Multiplicative Noise 9.1 Introduction 9.2 Problem Formulation and Preliminaries 9.3 Robust Policy Iteration 9.4 Multi-trajectory Optimistic Least-Squares Policy Iteration 9.5 An Illustrative Example 9.6 Conclusions References Index