ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Trends in Development of Medical Devices

دانلود کتاب روند توسعه تجهیزات پزشکی

Trends in Development of Medical Devices

مشخصات کتاب

Trends in Development of Medical Devices

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0128209607, 9780128209608 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 206 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 52,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 15


در صورت تبدیل فایل کتاب Trends in Development of Medical Devices به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روند توسعه تجهیزات پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب روند توسعه تجهیزات پزشکی



روندها در توسعه تجهیزات پزشکی مبانی تجهیزات پزشکی و توسعه آنها، مقررات و اثرات سم شناسی، ارزیابی خطر و کاهش را پوشش می دهد. همچنین در مورد نگهداری از مجموعه تجهیزات پزشکی در طول چرخه عمر محصول بحث می کند. این کتاب اطلاعات و دانش به روزی را در مورد چگونگی درک موقعیت و مزایای دستگاه های پزشکی جدید معرفی شده برای بهبود مراقبت های بهداشتی ارائه می دهد. محققان و متخصصان صنعت در زمینه های تجهیزات پزشکی، جراحی، سم شناسی پزشکی، داروسازی و ساخت دستگاه های پزشکی این کتاب را مفید خواهند یافت.

ویراستاران و همکاران کتاب یک پایگاه جهانی و بین رشته‌ای از دانش را تشکیل می‌دهند که به این کتاب آورده‌اند.


توضیحاتی درمورد کتاب به خارجی

Trends in Development of Medical Devices covers the basics of medical devices and their development, regulations and toxicological effects, risk assessment and mitigation. It also discusses the maintenance of a medical device portfolio during product lifecycle. This book provides up-to-date information and knowledge on how to understand the position and benefits of new introduced medical devices for improving healthcare. Researchers and industry professionals from the fields of medical devices, surgery, medical toxicology, pharmacy and medical devices manufacture will find this book useful.

The book's editors and contributors form a global, interdisciplinary base of knowledge which they bring to this book.



فهرست مطالب

Cover
Trends in Development of Medical Devices
Copyright
Contents
	Part I Proof of concept1
	Part II Design inputs43
	Part III Design outputs97
	Part IV Design transfer153
List of contributors
Part I: Proof of concept
1 Advancements in three-dimensional printing for the medical device industry
	1.1 Introduction
	1.2 Three-dimensional printing technologies
		1.2.1 Overview of the additive (3D printing) manufacturing process
		1.2.2 Metal three-dimensional printing technology
		1.2.3 Nonmetal three-dimensional printing technology
	1.3 Three-dimensional materials
		1.3.1 Plastics
		1.3.2 Metals
		1.3.3 Resins
		1.3.4 Other materials
	1.4 Design guidelines for three-dimensional printing
		1.4.1 Choosing a three-dimensional model
		1.4.2 File formats
		1.4.3 Three-dimensional model optimization
	1.5 Applications of three-dimensional printing in the medical industry
		1.5.1 Dentistry
		1.5.2 Tissues/organs
		1.5.3 Implants and prostheses
		1.5.4 Anatomical models
		1.5.5 Drug formulations
	1.6 Future trends in three-dimensional printing
	References
2 ONE-GUI Designing for Medical Devices & IoT introduction
	2.1 Introduction to the graphical user interface
		2.1.1 What is a graphical user interface?
		2.1.2 Graphical user interface designing tools (Altia and Qt)
			2.1.2.1 Qt Designer and Qt Creator framework for graphical user interfaces
			2.1.2.2 Altia design tool for developing graphical user interface
			2.1.2.3 Altia versus Qt
	2.2 Graphical user interface designer tools for medical devices
		2.2.1 What is Qt?
			2.2.1.1 Why Qt?
			2.2.1.2 Tools in Qt
				2.2.1.2.1 Qt Creator (integrated development environment)
				2.2.1.2.2 Qt Designer
		2.2.2 What is Altia?
			2.2.2.1 Why Altia?
			2.2.2.2 Tools in Altia
				2.2.2.2.1 Altia Design
				2.2.2.2.2 DeepScreen
				2.2.2.2.3 PhotoProto (Adobe plug-in)
				2.2.2.2.4 FlowProto (Microsoft Visio plug-in)
	2.3 Creating and configuring the graphical user interface
		2.3.1 Concepts of ONE-GUI
		2.3.2 Creating the graphical user interface
			2.3.2.1 Graphical user interface design considerations
			2.3.2.2 ONE-GUI designing
		2.3.3 Code signing for graphical user interface applications
			2.3.3.1 Digital signature (Windows and Mac OS)
				2.3.3.1.1 Windows programs code signing
				2.3.3.1.2 Mac OSX code signing
	2.4 Overview of Internet of Medical Things
		2.4.1 What is the Internet of Things?
			2.4.1.1 How the Internet of Things work
			2.4.1.2 Benefits of Internet of Things
			2.4.1.3 Internet of Things privacy and security threats
		2.4.2 Healthcare Internet of Medical Things
			2.4.2.1 How important is security in Internet of Medical Things?
		2.4.3 Wearable technology (virtual reality and augmented reality)
			2.4.3.1 The differences between augmented reality and virtual reality
			2.4.3.2 Augmented reality in the medical industry
			2.4.3.3 Augmented reality benefits patients
			2.4.3.4 Augmented reality benefits doctors and medical students
		2.4.4 Summary
	Further reading
3 Biomimetics in the design of medical devices
	3.1 Introduction
		3.1.1 Biomimetics
		3.1.2 Engineering design inspirations from nature
	3.2 Medical device design
		3.2.1 Medical device design
		3.2.2 Bridging biomimetics and medical device design
	3.3 Influence of engineering trends in medical device design
		3.3.1 Innovations in manufacturing
		3.3.2 Identification of biocompatible materials
	3.4 Challenges in adapting biomimetics
	3.5 Applications of biomimetics in medical device design
		3.5.1 Design of orthopedic implants based on bone anatomy
		3.5.2 Bioresorbable polymers
	3.6 Conclusion
	References
Part II: Design inputs
4 General safety and performance of medical electrical equipment
	4.1 Introduction
	4.2 General requirements for tests
		4.2.1 Terminology and definitions
		4.2.2 Number of samples or sample size
		4.2.3 Classification
		4.2.4 Identification, marking, and documents
		4.2.5 Power input
	4.3 Environmental condition
	4.4 Protection against electric shock hazards
		4.4.1 Requirements related to classification
		4.4.2 Protective earthing, functional earthing, and potential equalization
		4.4.3 Continuous leakage currents and patient auxiliary currents
		4.4.4 Dielectric strength
	4.5 Protection against mechanical hazards
		4.5.1 Mechanical strength and moving parts
		4.5.2 Surfaces, corners, and edges
		4.5.3 Expelled parts
	4.6 Protection against hazards from excessive radiation
		4.6.1 X-radiation, alpha, beta, gamma, neutron radiation, and another particle radiation
		4.6.2 Microwave radiation and light radiation
		4.6.3 Infrared radiation and ultraviolet radiation
		4.6.4 Acoustical energy
		4.6.5 Electromagnetic compatibility
	4.7 Protection against excessive temperatures and other safety hazards
		4.7.1 Excessive temperatures and fire prevention
		4.7.2 Overflow, spillage, leakage, humidity, ingress of liquids, cleaning, and sterilization
	4.8 Abnormal operation and fault conditions environmental tests
	References
5 Medical device risk management
	5.1 What is risk management?
	5.2 Risk management process
		5.2.1 Terms used in risk management
		5.2.2 Why should we perform risk management?
	5.3 Risk analysis
		5.3.1 Automated risk analysis—visual basic for applications
			5.3.1.1 Overview
			5.3.1.2 Background
			5.3.1.3 Advantages of visual basic for applications
	5.4 Risk evaluation
	5.5 Risk control
		5.5.1 Risk control and monitoring activities
		5.5.2 Risk control measures
		5.5.3 Safety risk zone
		5.5.4 Mitigation
	5.6 Residual risk acceptability
	5.7 Risk management report
	5.8 Postmarket surveillance
	5.9 ISO 14971:2007
	5.10 Conclusion
	Further reading
6 Materials testing
	6.1 Introduction
		6.1.1 Background
		6.1.2 Materials used in medical devices
	6.2 Material selection
		6.2.1 Mechanical properties
		6.2.2 High wear resistance
		6.2.3 Physical properties
		6.2.4 Chemical properties
		6.2.5 Rheological properties
		6.2.6 Biocompatibility
		6.2.7 Biofunctionality
		6.2.8 Toxicology
		6.2.9 Design and manufacturability
		6.2.10 High corrosion resistance
	6.3 Materials testing
		6.3.1 Testing hardness of ceramics (DIN EN843-4/ISO 14705)17,18
		6.3.2 Shear and wear testing
		6.3.3 Tension testing of materials
		6.3.4 Determination of content of nonmetallic inclusions
		6.3.5 Stereological evaluation of porous coatings on medical implants (ASTM F1854)
		6.3.6 Standard test for accelerated aging of ultrahigh-molecular-weight polyethylene
		6.3.7 Dissolution test of calcium phosphate ASTM F1926
		6.3.8 Abrasion resistance of coatings ASTM F1978
		6.3.9 Corrosion testing of medical implants
	6.4 Standard tests for material specification
		6.4.1 Bone cement specifications
		6.4.2 Ceramic specification ISO 13356 and ISO 6474-1/2
		6.4.3 Polyethylene specification ASTM F648
		6.4.4 Polymethylmethacrylate molding resin ASTM F3087
		6.4.5 Grain size analysis ASTM E112 and ISO 643
	6.5 Hazardous substances
		6.5.1 Hazardous test regulations
		6.5.2 Test methods
	6.6 List of abbreviations
	References
	Further reading
Part III: Design outputs
7 Biocompatibility and Toxicology
	7.1 Introduction
		7.1.1 Background
		7.1.2 Classification of medical devices
		7.1.3 Drug device combination products
	7.2 Biomaterials and medical devices
		7.2.1 Uses of biomaterials
		7.2.2 Types of biomaterials
	7.3 Phases of product development
		7.3.1 Phase I: Initiation, opportunity, and risk analysis/device discovery and concept
		7.3.2 Phase II: Formulation, concept, and feasibility/preclinical research prototype
		7.3.3 Phase III: Design and development—verification and validation/pathway to approval
		7.3.4 Phase IV: final validation and product launch preparation
		7.3.5 Phase V: Product launch and postlaunch assessment
	7.4 Biocompatibility testing
		7.4.1 Extractants and leachable procedure (ISO 10993)
			7.4.1.1 Study design
				7.4.1.1.1 Extractants and leachables design for medical devices whose route of entry is the drug product of medical devices
	7.5 Toxicological risk assessment
		7.5.1 Cytotoxicity studies
		7.5.2 Delayed-type hypersensitivity study
			7.5.2.1 Guinea pig maximization test for delayed-hypersensitivity analysis
			7.5.2.2 Local lymph node assay for delayed-hypersensitivity analysis
		7.5.3 Hemocompatibility test
		7.5.4 Biodegradation study
			7.5.4.1 ISO 10993:1339
			7.5.4.2 ISO 10993:1440
			7.5.4.3 ISO 10993:1541
		7.5.5 Implantation study
		7.5.6 Toxicokinetic study
		7.5.7 Genotoxicity
		7.5.8 Carcinogenicity
		7.5.9 Immunotoxicology
		7.5.10 Systemic toxicity (acute, subacute, subchronic, and chronic) study
	7.6 Microbiology and sterility studies
	7.7 Conclusion
	References
	Further reading
8 Medical device regulations
	8.1 Introduction
	8.2 Medical devices—government regulations5
	8.3 Standards
		8.3.1 Typical process of standard development
	8.4 Important regulatory bodies of developed countries
		8.4.1 FDA or USFDA
			8.4.1.1 FDA regulation types for medical devices
		8.4.2 European Union—Medical Device Regulation
			8.4.2.1 Restriction of Hazardous Substances
			8.4.2.2 EU MDR
			8.4.2.3 Differences between Medical Device Regulation and Medical Device Directive
			8.4.2.4 Medical Device Regulation
			8.4.2.5 Differences between a directive and a regulation
			8.4.2.6 European Commission
			8.4.2.7 Implementing acts
		8.4.3 China—NMPA/CFDA
			8.4.3.1 Recent regulatory changes in China
		8.4.4 REACH
			8.4.4.1 Functions of REACH
			8.4.4.2 Substance identification
			8.4.4.3 REACH inquiry
			8.4.4.4 REACH registration
			8.4.4.5 PPROD exemption
			8.4.4.6 Evaluation under REACH
			8.4.4.7 Risk management under REACH and classification, labelling and packaging (CLP)
		8.4.5 Restriction of Hazardous Substances
			8.4.5.1 Background to electrical and electronic equipment
			8.4.5.2 What is RoHS? And why RoHS?
			8.4.5.3 Why?
			8.4.5.4 What has changed in RoHS 2?
			8.4.5.5 RoHS 2 exempted product categories
			8.4.5.6 RoHS 3
			8.4.5.7 What is CE marking?
			8.4.5.8 Record maintenance
			8.4.5.9 What is RoHS 5/6?
			8.4.5.10 What is REACH and how is it related to RoHS?
			8.4.5.11 What is WEEE?
			8.4.5.12 How are RoHS and WEEE related?
	8.5 Authorized websites for medical devices regulations
	References
	Further reading
Part IV: Design transfer
9 Medical device portfolio cleanup
	9.1 Introduction
	9.2 Medical device management
		9.2.1 Management responsibility
		9.2.2 Medical devices management group
		9.2.3 Device management policy
		9.2.4 Monitoring and audit
		9.2.5 Reporting adverse incidents
	9.3 Portfolio management
		9.3.1 Portfolio prioritization
		9.3.2 Portfolio transformation
		9.3.3 Translating strategic planning into initiatives
	9.4 Decommissioning and disposal of devices
		9.4.1 Planning for replacement of existing devices
		9.4.2 Decommissioning of existing devices
		9.4.3 Disposal of devices
	9.5 Supply chain management
		9.5.1 Common freight among manufacturers
		9.5.2 Multitenant warehouses
		9.5.3 Eliminate excess inventory
	9.6 Inventory management
		9.6.1 Forecasting the inventory need for medical devices
		9.6.2 Determining the suppliers
		9.6.3 Managing supplier contracts
		9.6.4 Planning for replacement parts and consumables orders
		9.6.5 Developing replacement and disposal policies
		9.6.6 Planning for disasters and emergencies
	9.7 Risk management
		9.7.1 Risk management framework and planning
		9.7.2 Risk analysis
			9.7.2.1 Hazard analysis
			9.7.2.2 Procedure analysis
		9.7.3 Risk evaluation
		9.7.4 Risk control
		9.7.5 Risk mitigation
	9.8 Postmarket surveillance
		9.8.1 Postmarket clinical follow-up
		9.8.2 Vigilance handling
	9.9 Conclusion
10 Overview of medical device processing
	10.1 Introduction
	10.2 Usages of medical instruments
		10.2.1 Terminology and definitions
		10.2.2 Classification
		10.2.3 510(K) process
	10.3 Environmental conditions
		10.3.1 Hygienic reprocessing2
			10.3.1.1 Cleaning3
			10.3.1.2 Disassembling4
				10.3.1.2.1 Strategies
			10.3.1.3 Corrosion testing5
				10.3.1.3.1 Eb—breakdown potential
	10.4 Sterilization specifications6
		10.4.1 Steam sterilization
		10.4.2 Dry heat sterilization
		10.4.3 Ethylene oxide sterilization
		10.4.4 Radiation sterilization
	10.5 Functional properties
		10.5.1 Shape, size geometry
	10.6 Testing
		10.6.1 Materials characterization and analytical chemistry
		10.6.2 Preclinical studies
		10.6.3 Biocompatibility testing
		10.6.4 Sterility assurance
	10.7 Interface
	10.8 Labeling
		10.8.1 Product labeling
		10.8.2 Instructions for use
		10.8.3 Product identification
		10.8.4 Regulatory requirements
	10.9 Design/asset transfer
		10.9.1 System content list
		10.9.2 Design and clinical risk management
		10.9.3 Risk management report
		10.9.4 Inventory control
	10.10 End of life (obsolescence)
	References
Index
Back Cover




نظرات کاربران