دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Dieudonne J.
سری:
ISBN (شابک) : 0122155505, 9780122155505
ناشر: AP
سال نشر: 1969
تعداد صفحات: 407
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Treatise on Analysis. Foundations of modern analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رساله در تحلیل. مبانی تحلیل مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد، هشتمین جلد از نه، ترجمه «رساله تحلیل» نوشته ژان دیودون، نویسنده و ریاضیدان فرانسوی است. نویسنده نشان می دهد که چگونه، برای یک کلاس محدود داوطلبانه از معادلات دیفرانسیل جزئی خطی، استفاده از عملگرهای Lax/Maslov و عملگرهای شبه دیفرانسیل، همراه با تئوری طیفی عملگرها در فضاهای هیلبرت، منجر به راه حل هایی می شود که بسیار واضح تر از راه حل هایی هستند که به آنها رسیده اند. از طریق نابرابری های \"پیشینی\" که کاربردهای بی فایده ای هستند.
This volume, the eighth out of nine, continues the translation of "Treatise on Analysis" by the French author and mathematician, Jean Dieudonne. The author shows how, for a voluntary restricted class of linear partial differential equations, the use of Lax/Maslov operators and pseudodifferential operators, combined with the spectral theory of operators in Hilbert spaces, leads to solutions that are much more explicit than solutions arrived at through "a priori" inequalities, which are useless applications.
I (2ed. Enl. and Corr. printing, 1969) Preface to the Enlarged and Corrected Printing Preface Contents Notations 1. ELEMENTS OF THE THEORY OF SETS 1. Elements and sets 2. Boolean algebra 3. Product of two sets 4. Mappings 5. Direct and inverse images 6. Surjective, injective, and bijective mappings 7. Composition of mappings 8. Families of elements. Union, intersection, and products of families of sets. Equivalence relations 9. Denumerable sets 2. REAL NUMBERS 1. Axioms of the real numbers 2. Order propertics of the real numbers 3. Least upper bound and greatest lower bound 3. METRIC SPACES 1. Distances and metric spaces 2. Examples of distances 3. Isometries 4. Balls, spheres, diameter 5. Open sets 6. Neighborhoods 7. Interior of a set 8. Closed sets, cluster points, closure of a set 9. Dense subsets; separable spaces 10. Subspaces of a metric space 11. Continuous mappings 12. Homeomorphisms. Equivalent distances 13. Limits 14. Cauchy sequences, complete spaces 15. Elementary extension theorems 16. Compact spaces 17. Compact sets 18. Locally compact spaces 19. Connected spaces and connected sets 20. Product of two metric spaces 4. ADDITIONAL PROPERTIES OF THE REAL LINE 1. Continuity of algebraic operations 2. Monotone functions 3. Logarithms and exponentials 4. Complex numbers 5. The Tietze-Urysohn extension theorem 5. NORMED SPACES 1. Normed spaces and Banach spaces 2. Series in a normed space 3. Absolutely convergent series 4. Subspaces and finite products of normed spaces 5. Condition of continuity of a multilinear mapping 6. Equivalent norms 7. Spaces of continuous multilinear mappings 8. Closed hyperplanes and continuous linear forms 9. Finite dimensional normed spaces 10. Separable normed spaces 6. HILBERT SPACES 1. Hermitian forms 2. Positive hermitian forms 3. Orthogonal projection on a complete subspace 4. Hilbert sum of Hilbert spaces 5. Orthonormal systems 6. Orthonormalization 7. SPACES OF CONTINUOUS FUNCTIONS 1. Spaces of bounded functions 2. Spaces of bounded continuous functions 3. The Stone-Weierstrass approximation theorem 4. Applications 5. Equicontinuous sets 6. Regulated functions 8. DIFFERENTIAL CALCULUS 1. Derivative of a continuous mapping 2. Formal rules of derivation 3. Derivatives in spaces of continuous linear functions 4. Derivatives of functions of one variable 5. The mean value theorem 6. Applications of the mean value theorem 7. Primitives and integrals 8. Application: the number e 9. Partial derivatives 10. Jacobians 11. Derivative of an integral depending on a parameter 12. Higher derivatives 13. Differential operators 14. Taylor’s formula 9. ANALYTIC FUNCTIONS 1. Power series 2. Substitution of power series in a power series 3. Analytic functions 4. The principle of analytic continuation 5. Examples of analytic functions; the exponential function; the number π 6. Integration along a road 7. Primitive of an analytic function in a simply connected domain 8. Index of a point with respect to a circuit 9. The Cauchy formula 10. Characterization of analytic functions of complex variables 11. Liouville’s theorem 12. Convergent sequences of analytic functions 13. Equicontinuous sets of analytic functions 14. The Laurent series 15. Isolated singular points; poles; zeros; residues 16. The theorem of residues 17. Meromorphic functions Appendix 9. APPLICATION OF ANALYTIC FUNCTIONS TO PLANE TOPOLOGY (Eilenberg\'s Method) 1. Index of a point with respect to a loop 2. Essential mappings in the unit circle 3. Cuts of the plane 4. Simple arcs and simple closed curves 10. EXISTENCE THEOREMS 1. The method of successive approximations 2. Implicit functions 3. The rank theorem 4. Differential equations 5. Comparison of solutions of differential equations 6. Linear differential equations 7. Dependence of the solution on parameters 8. Dependence of the solution on initial conditions 9. The theorem of Frobenius 11. ELEMENTARY SPECTRAL THEORY 1. Spectrum of a continuous operator 2. Compact operators 3. The theory of F. Riesz 4. Spectrum of a compact operator 5. Compact operators in Hilbert spaces 6. The Fredholm integral equation 7. The Sturm-Liouville problem Apdx. ELEMENTS OF LINEAR ALGEBRA 1. Vector spaces 2. Linear mappings 3. Direct sums of subspaces 4. Bases. Dimension and codimension 5. Matrices 6. Multilinear mappings. Determinants 7. Minors of a determinant References Index II (1ed. Enl. and Corr. printing, 1976) Schematic Plan of the Work Contents Notation 12. TOPOLOGY AND TOPOLOGICAL ALGEBRA 1. Topological spaces 2. Topological concepts 3. Hausdorff spaces 4. Uniformizable spaces 5 . Products of uniformizable spaces 6. Locally finite coverings and partitions of unity 7. Semicontinuous functions 8. Topological groups 9. Metrizable groups 10. Spaces with operators. Orbit spaces 11. Homogeneous spaces 12. Quotient groups 13. Topological vector spaces 14. Locally convex spaces 15. Weak topologies 16. Baire\'s theorem and its consequences 13. INTEGRATION 1. Definition of a measure 2. Real measures 3. Positive measures. The absolute value of a measure 4. The vague topology 5. Upper and lower integrals with respect to a positive measure 6. Negligible functions and sets 7. Integrable functions and sets 8. Lebesgue\'s convergence theorems 9. Measurable functions 10. Integrals of vector-valued functions 11. The spaces L^1 and L^2 12. The space L^∞ 13. Measures with base μ 14. Integration with respect to a positive measure with base μ 15. The Lebesgue-Nikodym theorem and the order relation on M_R(X) 16. Applications: I. Integration with respect to a complex measure 17. Applications: II. Dual of L^1 18. Canonical decompositions of a measure 19. Support of a measure. Measures with compact support 20. Bounded measures 21. Product of measures 14. INTEGRATION IN LOCALLY COMPACT GROUPS 1. Existence and uniqueness of Haar measure 2. Particular cases and examples 3. The modulus function on a group. The modulus of an automorphism 4. Haar measure on a quotient group 5. Convolution of measures on a locally compact group 6. Examples and particular cases of convolution of measures 7. Algebraic properties of convolution 8. Convolution of a measure and a function 9. Examples of convolutions of measures and functions 10. Convolution of two functions 11. Regularization 15. NORMED ALGEBRAS AND SPECTRAL THEORY 1. Normed algebras 2. Spectrum of an element of a normed algebra 3. Characters and spectrum of a commutative Banach algebra. The Gelfand transformation 4. Banach algebras with involution. Star algebras 5. Representations of algebras with involution 6. Positive linear forms, positive Hilbert forms, and representations 7. Traces, bitraces, and Hilbert algebras 8. Complete Hilbert algebras 9. The Plancherel-Godement theorem 10. Representations of algebras of continuous functions 11. The spectral theory of Hilbert 12. Unbounded normal operators 13. Extensions of hermitian operators References Volume II Index ERRATUM to Volume II, p.296 III (1ed., 1972) Schematic Plan of the Work Contents Notation 16. DIFFERENTIAL MANIFOLDS 1. Charts, atlases, manifolds 2. Examples of differential manifolds. Diffeomorphisms 3. Differentiable mappings 4. Differentiable partitions of unity 5. Tangent spaces, tangent linear mappings, rank 6. Products of manifolds 7. Immersions, submersions, subimmersions 8. Submanifolds 9. Lie groups 10. Orbit spaces and homogeneous spaces 11. Examples: unitary groups, Stiefel manifolds, Grassmannians, projective spaces 12. Fibrations 13. Definition of fibrations by means of charts 14. Principal fiber bundles 15. Vector bundles 16. Operations on vector bundles 17. Exact sequences, subbundles, and quotient bundles 18. Canonical morphisms of vector bundles 19. Inverse image of a vector bundle 20. Differential forms 21. Orientable manifolds and orientations 22. Change of variables in multiple integrals. Lebesgue measures 23. Sard\'s theorem 24. Integral of a differential n-form over an oriented pure manifold of dimension n 25. Embedding and approximation theorems. Tubular neighborhoods 26. Differentiable homotopies and isotopies 27. The fundamental group of a connected manifold 28. Covering spaces and the fundamental group 29. The universal covering of a differential manifold 30. Covering spaces of a Lie group 17. DIFFERENTIAL CALCULUS ON A DIFFERENTIAL MANIFOLD I. Distributions and Differential Operators 1. The spaces E^{(r)} (U) (U open in R^n) 2. Spaces of C^∞ (resp. C\') sections of vector bundles 3. Currents and distributions 4. Local definition of a current. Supportof a current 5. Currents on an oriented manifold. Distributions on R^n 6. Real distributions. Positive distributions 7. Distributions with compact support. Point-distributions 8. The weak topology on spaces of distributions 9. Example: finite parts of divergent integrals 10. Tensor products of distributions 11. Convolution of distributions on a Lie group 12. Regularization of distributions 13. Differential operators and fields of point-distributions 14. Vector fields as differential operators 15. The exterior differential of a differential p-form 16. Connections in a vector bundle 17. Differential operators associated with a connection 18. Connections on a differential manifold 19. The covariant exterior differential 20. Curvature and torsion of a connection Apdx. MULTILINEAR ALGEBRA 8. Modules. Free modules 9. Duality for free modules 10. Tensor product of free modules 11. Tensors 12. Symmetric and antisymmetric tensors 13. The exterior algebra 14. Duality in the exterior algebra 15. Interior products 16. Nondegenerate alternating bilinear forms. Symplectic groups 17. The symmetric algebra 18. Derivations and antiderivations of graded algebras 19. Lie algebras References Volume III Index IV (1ed., 1974) Schematic Plan of the Work Contents Notation 18. DIFFERENTIAL CALCULUS ON A DIFFERENTIAL MANIFOLD II. Elementary Global Theory of 1st- and 2nd- Order Differential Equations. Elementary Local Theory of Differential Systems 1. First-order differential equations on a differential manifold 2. Flow of a vector field 3. 2nd-order differential equations on a manifold 4. Sprays and isochronous 2nd-order equations 5. Convexity properties of isochronous differential equations 6. Geodesics of a connection 7. One-parameter families of geodesics and Jacobi fields 8. Fields of p-directions, Pfaffian systems, and systems of partial differential equations 9. Differential systems 10. Integral elements of a differential system 11. Formulation of the problem of integration 12. The Cauchy-Kowalewska theorem 13. The Cartan-Kähler theorem 14. Completely integrable Pfaffian systems 15. Singular integral manifolds; characteristic manifolds 16. Cauchy characteristics 17. Examples: I. 1st-order partial differential equations 18. Examples: II. 2nd-order partial differential equations 19. LIE GROUPS AND LIE ALGEBRAS 1. Equivariant actions of Lie groups on fiber bundles 2. Actions of a Lie group G on bundles over G 3. The infinitesimal algebra and the Lie algebra of a Lie group 4. Examples 5. Taylor’s formula in a Lie group 6. The enveloping algebra of the Lie algebra of a Lie group 7. Immersed Lie groups and Lie subalgebras 8. Invariant connections, one-parameter subgroups, and the exponential mapping 9. Properties of the exponential mapping 10. Closed subgroups of real Lie groups 11. The adjoint representation. Normalizers and centralizers 12. The Lie algebra of the commutator group 13. Automorphism groups of Lie groups 14. Semidirect products of Lie groups 15. Differential of a mapping into a Lie group 16. Invariant differential forms and Haar measure on a Lie group 17. Complex Lie groups 20. PRINCIPAL CONNECTIONS AND RIEMANNIAN GEOMETRY 1. The bundle of frames of a vector bundle 2. Principal connections on principal bundles 3. Covariant exterior differentiation attached to a principal connection. Curvature form of a principal connection 4. Examples of principal connections 5. Linear connections associated with a principal connection 6. The method of moving frames 7. G-structures 8. Generalities on pseudo-Riemannian manifolds 9. The Levi-Civita connection 10. The Riemann-Christoffel tensor 11. Examples of Riemannian and pseudo-Riemannian manifolds 12. Riemannian structure induced on a submanifold 13. Curves in Riemannian manifolds 14. Hypersurfaces in Riemannian manifolds 15. The immersion problem 16. The metric space structure of a Riemannian manifold: local properties 17. Strictly geodesically convex balls 18. The metric space structure of a Riemannian manifold: global properties. Complete Riemannian manifolds 19. Periodic geodesics 20. 1st and 2nd variation of arclength. Jacobi fields on a Riemannian manifold 21. Sectional curvature 22. Manifolds with positive sectional curvature or negative sectional curvature 23. Riemannian manifolds of constant curvature Apdx. TENSOR PRODUCTS AND FORMAL POWER SERIES 20. Tensor products of infinite-dimensional vector spaces 21. Algebras of formal power series References VOLUME IV Index V (1ed., 1977) Contents Schematic Plan of the Work Notation 21. COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS 1. Continuous unitary representations of locally compact groups 2. The Hilbert Algebra of a compact group 3. Characters of a compact group 4. Continuous unitary representations of compact groups 5. Invariant bilinear forms; the Killing form 6. Semisimple Lie groups. Criterion of semisimplicity for a compact Lie group 7. Maximal tori in compact connected Lie groups 8. Roots and almost simple subgroups of rank 1 9. Linear representations of SU(2) 10. Properties of the roots of a compact semisimple group 11. Bases of a root system 12. Examples: the classical compact groups 13. Linear representations of compact connected Lie groups 14. Anti-invariant elements 15. Weyl\'s formulas 16. Center, fundamental group and irreducible representations of semisimple compact connected groups 17. Complexifications of compact connected semisimple groups 18. Real forms of the complexifications of compact connected semisimple groups and symmetric spaces 19. Roots of a complex semisimple Lie algebra 20. Weyl bases 21. The Iwasawa decomposition 22. Cartan\'s criterion for solvable Lie algebras 23. E. E. Levi\'s theorem Apdx. MODULES 22. Simple modules 23. Semisimple modules 24. Examples 25. The canonical decomposition of an endomorphism 26. Finitely generated Z-modules References V and VI Index VI (1ed., 1978) Contents Schematic Plan of the Work Notation 22. HARMONIC ANALYSIS 1. Continuous functions of positive type 2. Measures of positive type 3. Induced representations 4. Induced representations and restrictions of representations to subgroups 5. Partial traces and induced representations of compact groups Banach space 6. Gelfand pairs and spherical functions 7. Plancherel and Fourier transforms 8. The spaces P(G) and P\'(Z) 9. Spherical functions of positive type and irreducible representations 10. Commutative harmonic analysis and Pontrjagin duality 11. Dual of a subgroup and of a quotient group 12. Poisson\'s formula 13. Dual of aproduct 14. Examples of duality 15. Continuous unitary representations of locally compact commutative groups 16. Declining functions on R^n 17. Tempered Distributions 18. Convolution of tempered distributions and the Paley-Wiener theorem 19. Periodic distributions and Fourier series 20. Sobolev spaces References Volume V and VI Index 17. Tempered distributions VII (1ed., 1988) Notation 23. LINEAR FUNCTIONAL EQUATIONS. Part I. Pseudodifferential Operators Part I. Pseudodifferential Operators 1. Integral Operators 2. Integral Operators of Proper Type 3. Integral Operators on Vector Bundles 4. Density Bundle and Kernel Sections 5. Bounded Sections 6. Volterra Operators 7. Carleman Operators 8. Generalized Eigenfunctions 9. Kernel Distributions 10. Regular Kernel Distributions 11. Smoothing Operators and Composition of Operators 12. Wave Front of a Distribution 13. Convolution Equations 14. Elementary Solutions 15. Problems of Existence and Uniqueness for Systems of Linear Partial Differential Equations 16. Operator Symbols 17. Oscillating Integrals 18. Lax-Maslov Operators 19. Pseudo-Differential Operators 20. Symbol of a Pseudodifferential Operator of Proper Type 21. Matrix Pseudodifferential Operators 22. Parametrix of Elliptical Operators on an Open Subset of R^n 23. Pseudodifferential Operators in H^s_0(X) Spaces 24. Classical Dirichlet Problem and Coarse Dirichlet Problems 25. The Green Operator 26. Pseudodifferential Operators on a Manifold 27. Adjoint of a Pseudodifferential Operator on a Manifold. Composition of Two Pseudodifferential Operators on a Manifold 28. Extension of Pseudodifferential Operators to Distribution Sections 29. Principal Symbols 30. Parametrix of Elliptic Operators on Manifolds 31. Spectral Theory of Hermitian Elliptic Operators: I. Self-Adjoint Extensions and Boundary Conditions 32. Spectral Theory of Hermitian Elliptic Operators: II. Generalized Eigenfunctions 33. Essentially Self-Adjoint Pseudodifferential Operators: I. Hermitian Convolution Operators on R^n 34. Essentially Self-Adjoint Pseudodifferential Operators: II. Atomic Spectra 35. Essentially Self-Adjoint Pseudodifferential Operators: III. Hermitian Elliptic Operators on a Compact Manifold 36. Invariant Differential Operators 37. Differential Properties of Spherical Functions 38. Example: Spherical Harmonics References VII and VIII Index VIII (1ed., 1993) Contents Notation 23. LINEAR FUNCTIONAL EQUATIONS. Part II. Boundary Value Problems Part II. Boundary Value Problems 39. Weyl-Kodaira theory : I. Elliptic differential operators on an interval of R 40. Weyl-Kodaira theory : II. Boundary conditions 41. Weyl-Kodaira theory : III. Self-adjoint operators associated with a linear differential equation 42. Weyl-KodairaTheory : IV. Green Function and Spectrum 43. Weyl-Kodaira theory : V. The case of second order equations 44. Weyl-Kodaira theory : VI. Example : Second order equations with periodic coefficients 45. Weyl-Kodaira theory : VII. Example: Gelfand-Levitan equations 46. Multilayer potentials : I. Symbols of rational type 47. Multilayer potentials : II. The case of hyperplane multilayers 48. Multilayer potentials : III. General case 49. Fine boundary value problems for elliptic differential operators : I. The Calderon operator 50. Fine boundary value problems for elliptic differential operators : II. Elliptic boundary value problems 51. Fine boundary value problems for elliptic differential operators : III. Ellipticity criteria 52. Fine boundary value problems for elliptic differential operators : IV. The spaces H^{s, r}(U_+) 53. Fine boundary value problems for elliptic differential operators : V. H^{s, r}-spaces and P-potentials 54. Fine boundary value problems for elliptic differential operators : VI. Regularity on the boundary 55. Fine boundary value problems for elliptic differential operators : VII. Coercive problems 56. Fine boundary value problems for elliptic differential operators : VIII. Generalized Green\'s formula 57. Fine boundary value problems for elliptic differential operators : IX. Fine problems associated with coercive problems 58. Fine boundary value problems for elliptic differential operators : X. Examples 59. Fine boundary value problems for elliptic differential operators : XI. Extension to some non-hermitian operators 60. Fine boundary value problems for elliptic differential operators : XII. Case of second-order operators; Neumann\'s problem 61. Fine boundary value problems for elliptic differential operators : XIII. The maximum principle 62. Parabolic equations : I. Construction of a one-sided local resolvent 63. Parabolic equations : II. The one-sided global Cauchy problem 64. Parabolic equations : III. Traces and eigenvalues 65. Evolution distributions 66. The wave equation : I. Generalized Cauchy problem 67. The wave equation : II. Propagation and domain of influence 68. The wave equation : III. Signals, waves, and rays 69. Strictly hyperbolic equations : I. Preliminary results 70. Strictly hyperbolic equations : II. Construction of a local approximate resolvent 71. Strictly hyperbolic equations : III. Examples and variations 72. Strictly hyperbolic equations : IV. The Cauchy problem for strictly hyperbolic differential operators; existence and local uniqueness 73. Strictly hyperbolic equations : V. Global problems 74. Strictly hyperbolic equations : VI. Extension to manifolds 75. Application to the spectrum of a hermitian elliptic operator References VII and VIII Index