دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Elina Shishkina. Sergei Sitnik
سری: Mathematics in Science and Engineering
ISBN (شابک) : 0128197811, 9780128197813
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 586
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics (Mathematics in Science and Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تبدیل، معادلات دیفرانسیل مفرد و کسری با کاربرد در فیزیک ریاضی (ریاضیات در علوم و مهندسی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تغییرها، معادلات دیفرانسیل مفرد و کسری با کاربرد در فیزیک ریاضی مسائل دشوار را با موارد سادهتر مشابهی مرتبط میکند. استراتژی کتاب برای معادلات و سیستم های دیفرانسیل و انتگرال و برای بسیاری از مسائل نظری و کاربردی در ریاضیات، فیزیک ریاضی، احتمال و آمار، علوم کامپیوتر کاربردی و روش های عددی کار می کند. علاوه بر قرار گرفتن در معرض پیشرفتهای اخیر، خوانندگان یاد میگیرند که از روشهای تغییر شکل نه تنها بهعنوان ابزارهای عملی، بلکه بهعنوان وسیلهای که بینشهای نظری را ارائه میدهند، استفاده کنند.
Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights.
Contents Acknowledgments and thanks Introduction 1 Basic definitions and propositions 1.1 Special functions 1.1.1 Gamma function, beta function, Pochhammer symbol, and error function 1.1.2 Bessel functions 1.1.3 Hypergeometric type functions 1.1.4 Polynomials 1.2 Functional spaces 1.2.1 Orthant Rn+, Cevm, Sev, and Lpγ spaces 1.2.2 Weighted measure, space L∞γ, and definition of weak (p,q)γ type operators 1.2.3 Space of weighted generalized functions Sev', absolutely continuous functions, and unitary operators 1.2.4 Mixed case 1.3 Integral transforms and Lizorkin-Samko space 1.3.1 One-dimensional integral transforms with Bessel functions in the kernels and Mellin transform 1.3.2 Properties of composition of integral transforms with Bessel functions in the kernel 1.3.3 Multi-dimensional integral transforms 1.4 Basic facts and formulas 1.4.1 Kipriyanov's classification of second order linear partial differential equations 1.4.2 Divergence theorem and Green's second identity for B-elliptic and B-hyperbolic operators 1.4.3 Tricomi equation 1.4.4 Abstract Euler-Poisson-Darboux equation 2 Basics of fractional calculus and fractional order differential equations 2.1 Short history of fractional calculus and fractional order differential equations 2.1.1 One-dimensional fractional derivatives and integrals 2.1.2 Fractional derivatives in mechanics 2.1.3 Fractional powers of multi-dimensional operators 2.1.4 Differential equations of fractional order 2.2 Standard fractional order integro-differential operators 2.2.1 Riemann-Liouville fractional integrals and derivatives on a segment 2.2.2 Riemann-Liouville fractional integrals and derivatives on a semiaxis 2.2.3 Gerasimov-Caputo fractional derivatives 2.2.4 Dzrbashian-Nersesyan fractional operators and sequential order fractional operators 2.3 Some more fractional order integro-differential operators 2.3.1 The Erdélyi-Kober operators 2.3.2 Fractional integrals and fractional derivatives of a function with respect to another function 2.3.3 Averaged or distributed order fractional operators 2.3.4 Saigo, Love, and other fractional operators with special function kernels 2.4 Integral transforms and basic differential equations of fractional order 2.4.1 Integral transforms of fractional integrals and derivatives 2.4.1.1 Laplace transform of Riemann-Liouville fractional integrals and derivatives on semiaxes 2.4.1.2 Mellin transform of Riemann-Liouville fractional integrals and derivatives on semiaxes 2.4.1.3 Laplace transform of Gerasimov-Caputo fractional derivatives on semiaxes 2.4.2 Laplace transform method for the homogeneous equations with constant coefficients with the left-sided Riemann-Liouville fractional derivatives of the order α on a semiaxis (0,∞) 2.4.3 Laplace transform method for homogeneous equations with constant coefficients with the left-sided Gerasimov-Caputo fractional derivatives of the order α on a semiaxis [0,∞) 2.4.4 Mellin integral transform and nonhomogeneous linear differential equations of fractional order 3 Essentials of transmutations 3.1 Definition of the transmutation operator, some examples of classical transmutations 3.1.1 Introduction to transmutation theory 3.1.2 Some examples of classical transmutations 3.2 Transmutations for Sturm-Liouville operator 3.2.1 Description of the problem and terminology 3.2.2 Transmutations in the form of the second kind Fredholm operators 3.2.3 Transmutations in the form of the second kind Volterra operators 3.2.4 Transmutations in the form of the first kind Volterra operators 3.3 Transmutations for different potentials 3.3.1 Kernel of transmutation intertwining operators of the Sturm-Liouville type 3.3.2 Cases when potential q(x) is an exponential function 3.3.3 Cases when potential q(x) is constant 3.3.4 Estimates of kernels and point formulas for estimating the error for calculating transmutation operators 3.4 Transmutations for singular Bessel operator 3.4.1 One-dimensional Poisson operator 3.4.2 Multi-dimensional Poisson operator 3.4.3 Generalized translation 3.4.4 Weighted spherical mean 4 Weighted generalized functions generated by quadratic forms 4.1 The weighted generalized function associated with a positive quadratic form and concentrated on a part of a cone 4.1.1 B-ultrahyperbolic operator 4.1.2 Weighted generalized function associated with a positive quadratic form 4.1.3 Weighted generalized function δγ(P) 4.2 Weighted generalized functions realized by the degrees of quadratic forms 4.2.1 Weighted generalized functions Pγ,±λ 4.2.2 The weighted generalized function Pλγ and (P±i 0)γλ associated with a quadratic form with complex coefficients 4.3 Other weighted generalized functions associated with a quadratic form 4.3.1 Functions (w2-|x|2)+,γλ and (c2+P±i0)λγ 4.3.2 General weighted generalized functions connected with quadratic form 4.4 Hankel transform of weighted generalized functions generated by the quadratic form 4.4.1 Hankel transform of rλγ 4.4.2 Hankel transforms of functions Pλγ, (P±i0)λγ, and Pλγ,± 4.4.3 Hankel transforms of functions (w2-|x|2)+,γλ and (c2+P±i0)λγ 5 Buschman-Erdélyi integral and transmutation operators 5.1 Buschman-Erdélyi transmutations of the first kind 5.1.1 Sonine-Poisson-Delsarte transmutations 5.1.2 Definition and main properties of Buschman-Erdélyi transmutations of the first kind 5.1.3 Factorizations of the first kind Buschman-Erdélyi operators and the Mellin transform 5.2 Buschman-Erdélyi transmutations of the second and third kind 5.2.1 Second kind Buschman-Erdélyi transmutation operators 5.2.2 Sonine-Katrakhov and Poisson-Katrakhov transmutations 5.2.3 Buschman-Erdélyi transmutations of the third kind with arbitrary weight function 5.2.4 Some applications of Buschman-Erdélyi transmutations 5.3 Multi-dimensional integral transforms of Buschman-Erdélyi type with Legendre functions in kernels 5.3.1 Basic definitions 5.3.2 The n-dimensional Mellin transform and its properties 5.3.3 Lν,2-theory and the inversion formulas for the modified H-transform 5.3.4 Inversion of H1σ,κ 5.4 Representations in the form of modified H-transform 5.4.1 Mellin transform of auxiliary functions K1( x) and K2( x) 5.4.2 Mellin transform of Pγδ,1( x) and Pγδ,2( x) 5.4.3 Lν,2-theory of the transforms Pγδ,kf (k=1,2) 5.4.4 Inversion formulas for transforms Pγδ,kf (k=1,2) 6 Integral transforms composition method for transmutations 6.1 Basic ideas and definitions of the integral transforms composition method for the study of transmutations 6.1.1 Background of ITCM 6.1.2 What is ITCM and how to use it? 6.2 Application of the ITCM to derive transmutations connected with the Bessel operator 6.2.1 Index shift for the Bessel operator 6.2.2 Poisson and "descent" operators, negative fractional power of the Bessel operator 6.2.3 ITCM for generalized translation and the weighted spherical mean 6.2.4 Integral representations of transmutations for perturbed differential Bessel operators 6.3 Connection formulas for solutions to singular differential equations via the ITCM 6.3.1 Application of transmutations for finding general solutions to Euler-Poisson-Darboux type equations 6.3.2 Application of transmutations for finding solutions to general Euler-Poisson-Darboux type equations 6.3.3 Application of transmutations for finding general solutions to singular Cauchy problems 7 Differential equations with Bessel operator 7.1 General Euler-Poisson-Darboux equation 7.1.1 The first Cauchy problem for the general Euler-Poisson-Darboux equation 7.1.2 The second Cauchy problem for the general Euler-Poisson-Darboux equation 7.1.3 The singular Cauchy problem for the generalized homogeneous Euler-Poisson-Darboux equation 7.1.4 Examples 7.2 Hyperbolic and ultrahyperbolic equations with Bessel operator in spaces of weighted distributions 7.2.1 The generalized Euler-Poisson-Darboux equation and the singular Klein-Gordon equation 7.2.2 Iterated ultrahyperbolic equation with Bessel operator 7.2.3 Generalization of the Asgeirsson theorem 7.2.4 Descent method for the general Euler-Poisson-Darboux equation 7.3 Elliptic equations with Bessel operator 7.3.1 Weighted homogeneous distributions 7.3.2 Extension of the weighted homogeneous distributions 7.3.3 Weighted fundamental solution of the Laplace-Bessel operator 7.3.4 The Dirichlet problem for an elliptic singular equation 8 Applications of transmutations to different problems 8.1 Inverse problems and applications of Buschman-Erdélyi transmutations 8.1.1 Inverse problems 8.1.2 Copson lemma 8.1.3 Norm estimates and embedding theorems in Kipriyanov spaces 8.1.4 Other applications of Buschman-Erdélyi operators 8.2 Applications of the transmutation method to estimates of the solutions for differential equations with variable coefficients and the problem of E. M. Landis 8.2.1 Applications of the transmutations method to the perturbed Bessel equation with a potential 8.2.2 The solution of the basic integral equation for the kernel of the transmutation operator 8.2.3 Application of the method of transmutation operators to the problem of E. M. Landis 8.2.4 The solution to the E. M. Landis problem belongs to T (λ+ε) 8.3 Applications of transmutations to perturbed Bessel and one-dimensional Schrödinger equations 8.3.1 Formulation of the problem 8.3.2 Solution of the basic integral equation for the kernel of a transmutation operator 8.3.3 Estimates for the case of a power singular at zero potential 8.3.4 Asymptotically exact inequalities for Legendre functions 8.4 Iterated spherical mean in the computed tomography problem 8.4.1 Iterated weighted spherical mean and its properties 8.4.2 Application of identity for an iterated spherical mean to the task of computed tomography 9 Fractional powers of Bessel operators 9.1 Fractional Bessel integrals and derivatives on a segment 9.1.1 Definitions 9.1.2 Basic properties of fractional Bessel integrals on a segment 9.1.3 Fractional Bessel integrals and derivatives on a segment of elementary and special functions 9.1.4 Fractional Bessel derivatives on a segment as inverse to integrals 9.2 Fractional Bessel integral and derivatives on a semiaxis 9.2.1 Definitions 9.2.2 Basic properties of fractional Bessel integrals on a semiaxis 9.2.3 Factorization 9.2.4 Fractional Bessel integrals on semiaxes of elementary and special functions 9.3 Integral transforms of fractional powers of Bessel operators 9.3.1 The Mellin transform 9.3.2 The Hankel transform 9.3.3 The Meijer transform 9.3.4 Generalized Whittaker transform 9.4 Further properties of fractional powers of Bessel operators 9.4.1 Resolvent for the right-sided fractional Bessel integral on a semiaxis 9.4.2 The generalized Taylor formula with powers of Bessel operators 10 B-potentials theory 10.1 Definitions of hyperbolic B-potentials, absolute convergence, and boundedness 10.1.1 Negative fractional powers of the hyperbolic expression with Bessel operators 10.1.2 Absolute convergence and boundedness 10.1.3 Semigroup properties 10.1.4 Examples 10.2 Method of approximative inverse operators applied to inversion of the hyperbolic B-potentials 10.2.1 Method of approximative inverse operators 10.2.2 General Poisson kernel 10.2.3 Representation of the kernel gαε,δ 10.2.4 Inversion of the hyperbolic B-potentials 10.3 Mixed hyperbolic Riesz B-potentials 10.3.1 Definition and basic properties of the mixed hyperbolic Riesz B-potential 10.3.2 Homogenizing kernel 10.4 Inversion of the mixed hyperbolic Riesz B-potentials 10.4.1 Auxiliary lemma 10.4.2 Property of Lrγ-boundedness of the function gα,γ,ε 10.4.3 Inversion theorems 11 Fractional differential equations with singular coefficients 11.1 Meijer transform method for the solution to homogeneous fractional equations with left-sided fractional Bessel derivatives on semiaxes of Gerasimov-Caputo type 11.1.1 General case 11.1.2 Particular cases and examples 11.2 Mellin transform method 11.2.1 Ordinary linear nonhomogeneous differential equations of fractional order on semiaxes 11.2.2 Example 11.3 Hyperbolic Riesz B-potential and its connection with the solution of an iterated B-hyperbolic equation 11.3.1 General algorithm 11.3.2 Definition 11.3.3 Variables in Lorentz space 11.3.4 Identity operator 11.4 The Riesz potential method for solving nonhomogeneous equations of Euler-Poisson-Darboux type 11.4.1 General nonhomogeneous iterated Euler-Poisson-Darboux equation 11.4.2 Mixed truncated hyperbolic Riesz B-potential 11.4.3 Nonhomogeneous general Euler-Poisson-Darboux equation with homogeneous conditions 11.4.4 Examples 12 Conclusion References Index