دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Yasha Hasija (editor)
سری:
ISBN (شابک) : 0128219726, 9780128219720
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 427
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Translational Biotechnology: A Journey from Laboratory to Clinics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بیوتکنولوژی ترجمه: سفری از آزمایشگاه به کلینیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بیوتکنولوژی ترجمه: سفری از آزمایشگاه به کلینیک یک رویکرد یکپارچه و چند رشته ای به بیوتکنولوژی ارائه می دهد تا به خوانندگان کمک کند شکاف های بین تحقیقات بنیادی و کاربردی را پر کنند. این کتاب با پوشش موضوعاتی از مفاهیم پایه تا روششناسی جدید، دیدگاههای پیشرفته و یکپارچهای از بیوتکنولوژی ترجمه ارائه میکند. موضوعات مورد بحث شامل درمان های مبتنی بر بیوتکنولوژی، کشف مسیر و هدف، روش های درمانی بیولوژیکی، بیوانفورماتیک ترجمه، و زیست شناسی سیستمی و مصنوعی است. بخشهای اضافی کشف دارو، پزشکی دقیق و تأثیر اجتماعی و اقتصادی بیوتکنولوژی ترجمه را پوشش میدهد. این کتاب برای بیوانفورماتیکان، بیوتکنولوژیست ها و اعضای حوزه زیست پزشکی که علاقه مند به کسب اطلاعات بیشتر در مورد این رشته امیدوارکننده هستند ارزشمند است.
Translational Biotechnology: A Journey from Laboratory to Clinics presents an integrative and multidisciplinary approach to biotechnology to help readers bridge the gaps between fundamental and functional research. The book provides state-of-the-art and integrative views of translational biotechnology by covering topics from basic concepts to novel methodologies. Topics discussed include biotechnology-based therapeutics, pathway and target discovery, biological therapeutic modalities, translational bioinformatics, and system and synthetic biology. Additional sections cover drug discovery, precision medicine and the socioeconomic impact of translational biotechnology. This book is valuable for bioinformaticians, biotechnologists, and members of the biomedical field who are interested in learning more about this promising field.
Cover Translational Biotechnology Copyright Contents List of contributors Preface 1 Translational biotechnology: A transition from basic biology to evidence-based research 1.1 Introduction 1.1.1 Background and emergence of the field 1.2 The phases of translational research 1.3 Challenges to solutions 1.4 Applications 1.4.1 Drug development 1.4.1.1 Protein drugs 1.4.1.2 Hormones 1.4.1.3 Monoclonal antibodies 1.4.1.4 Cytokines 1.4.1.5 Vaccines 1.4.2 Nanomedicine 1.4.3 Gene therapy 1.4.4 Precision medicine and biomarker development 1.4.5 Microbial engineering for bio-therapeutics 1.4.6 Application of big data and translational bioinformatics 1.5 Conclusion and future directions 1.6 Highlights Conflict of interest References 2 Biotechnology-based therapeutics 2.1 Introduction 2.2 Human gene therapy 2.2.1 Somatic cell gene therapy 2.2.2 Germline gene therapy 2.2.3 Gene transfer system 2.2.3.1 Nonbiological delivery system 2.2.3.1.1 Physical method Sonoporation Electroporation Magnetofection Hydroporation Gene gun 2.2.3.1.2 Chemical method Liposomes Polymers Heat shock 2.2.3.1.3 Biological method Bacterial vector Viral vector Retroviral vectors Adenoviral vectors Adeno-associated vectors Herpes simplex virus 2.2.4 Gene-editing technology 2.2.4.1 Zinc-finger nucleases 2.2.4.2 Transcription activator-like effector nucleases 2.2.4.3 Clustered regularly interspaced short palindromic repeat–Cas-associated nucleases 2.2.5 Ethical issue 2.3 Stem cell therapy 2.3.1 Sources of stem cells 2.3.1.1 Pluripotent stem cells 2.3.1.2 Multipotent stem cells 2.3.2 Benefits of stem cell therapy in various disorder 2.3.2.1 Retinal diseases 2.3.2.2 Heart diseases 2.3.2.3 Neural disease 2.3.2.4 Lung disorder 2.3.2.5 Liver disease 2.3.3 Challenges and problems 2.4 Nanomedicine 2.4.1 Nano therapeutic applications 2.4.1.1 Nano drug delivery 2.4.1.1.1 Hydrogel 2.4.1.1.2 Micelle 2.4.1.1.3 Dendrimers 2.4.1.1.4 Polymers 2.4.1.1.5 Liposomes 2.4.1.2 Nanosensor 2.4.2 Tissue engineering 2.4.3 Nanoimaging 2.5 Drug designing and delivery 2.5.1 Rational drug design 2.5.2 Computer-aided drug design 2.5.2.1 In silico drug design 2.5.2.2 Machine learning in drug design 2.5.2.2.1 Artificial intelligence in drug design 2.5.2.2.2 Artificial neural network in drug design 2.5.3 Drug delivery 2.6 Recombinant therapeutic proteins and vaccines 2.6.1 Recombinant protein 2.6.2 Expression system 2.6.2.1 Bacteria 2.6.2.2 Yeast 2.6.2.3 Mammals 2.6.3 Recombinant protein as a treatment 2.6.3.1 Anemia 2.6.3.2 Diabetes 2.6.3.3 Human growth hormone 2.6.3.4 Hepatitis B 2.6.3.5 Ovulation and pregnancy 2.6.3.6 Gene therapy 2.6.4 Recombinant vaccine 2.6.4.1 Live-attenuated vaccine 2.6.4.2 Subunit vaccine 2.6.4.3 Vector vaccine 2.7 Conclusion and future applications Conflicts of interest Author’s contribution References 3 Advanced biotechnology-based therapeutics 3.1 Introduction 3.2 Technologies that lead to the discovery of therapy 3.2.1 Genome editing technologies 3.2.2 Role of nanomedicine in drug discovery approaches 3.2.3 Antibody–drug conjugates 3.3 Molecular diagnostics 3.3.1 Translational bioinformatics 3.3.2 Organoids—tools for disease models 3.4 Cell-based therapy 3.5 Nanotechnology and its uses in biomedicine 3.6 Genome-scale metabolic modeling 3.7 Critical processes in the flow from basic science to practical application in the clinic via clinical trials and transl... 3.8 Major pitfalls in translational research 3.9 Advancement in devices, biologics, and vaccines as an introduction to biotechnology products that are being used in therapy 3.10 Conclusion and summary References 4 Human in vitro disease models to aid pathway and target discovery for neurological disorders 4.1 Introduction 4.2 Generation of human disease models using iPSCs/patient fibroblasts 4.2.1 Directed differentiation into neural cells 4.2.2 Direct differentiation into neurons/glia 4.2.3 Direct lineage reprogramming/transdifferentiation into neurons 4.3 Modeling neurodevelopmental disorders 4.3.1 Rett syndrome 4.3.2 Fragile X syndrome 4.3.3 Autism spectrum disorders 4.3.4 Schizophrenia 4.4 Modeling neurodegenerative diseases 4.4.1 Amyotrophic lateral sclerosis 4.4.2 Alzheimer’s disease 4.4.3 Parkinson’s disease 4.5 Cerebral organoids and the future of human in vitro disease modeling 4.6 From bench to bedside—identification of pathways and drug targets for designing therapies 4.7 Future perspectives Keyword definitions References 5 Importance of targeted therapies in acute myeloid leukemia 5.1 Introduction 5.1.1 Conventional therapy for acute myeloid leukemia 5.1.2 Significance of target discovery 5.2 Approaches in target discovery 5.2.1 Systems approach 5.2.1.1 Zebrafish (Danio rerio) 5.2.1.2 Mouse (Mus musculus) 5.2.2 Molecular approach 5.2.2.1 Proteomic technologies 5.2.2.1.1 Antibody-based approaches 5.2.2.1.1.1 Immunophenotyping 5.2.2.1.1.2 Multiparameter flow cytometry 5.2.2.1.1.3 Mass cytometry 5.2.2.1.1.4 Antibody arrays 5.2.2.1.2 Mass spectrometry–based approaches 5.2.2.1.2.1 Two-dimensional difference gel electrophoresis 5.2.2.1.2.2 Stable isotope labeling with amino acids in cell culture 5.2.2.1.2.3 Isotope-coded affinity tags 5.2.2.1.2.4 Isobaric tags for relative and absolute quantification 5.2.2.1.2.5 Multiple reaction monitoring mass spectrometry 5.2.2.2 Genomic technologies 5.2.2.2.1 Next-generation sequencing 5.2.2.2.1.1 Whole-genome sequencing 5.2.2.2.1.2 Exome sequencing 5.2.2.2.1.3 Transcriptome sequencing 5.2.2.2.2 Microarray 5.2.2.2.3 RNA interference 5.2.2.2.4 Genome-editing technologies 5.2.2.2.4.1 Zinc-finger nucleases and transcription activator-like effector nucleases 5.2.2.2.4.2 CRISPR/Cas system 5.3 Acute myeloid leukemia–targeted therapies in clinics 5.3.1 BCL-2 inhibitors 5.3.2 Isocitrate dehydrogenase inhibitors 5.3.3 PML-RARα targeted therapy 5.3.4 Targeting FLT3-mutated acute myeloid leukemia: from bench to bedside (a case study) 5.4 Hurdles and emerging targeted therapies 5.5 Conclusion References 6 Biological therapeutic modalities 6.1 Introduction to biological therapeutic modalities 6.2 History of classical modalities 6.3 New modalities 6.3.1 Small molecules 6.3.2 Nucleic acid therapeutics 6.3.3 Therapeutic proteins 6.3.3.1 Therapeutic peptides 6.3.3.2 Therapeutic enzymes 6.3.4 Antibodies 6.3.4.1 Monoclonal antibodies 6.3.4.2 Engineered multispecific antibodies 6.3.5 Cell-based immunotherapies 6.3.6 Stem cells 6.3.7 Phage therapies 6.3.8 Microbiome-based therapeutics 6.4 Future of biological therapeutics 6.5 Case study—bio-therapeutic modalities in COVID-19 treatment 6.6 Conclusion References 7 The journey of noncoding RNA from bench to clinic 7.1 Introduction 7.1.1 Noncoding RNAs and their classification 7.1.2 In silico ncRNA prediction tools 7.1.3 Screening and characterization of ncRNAs 7.1.4 Small noncoding RNAs (miRNAs and siRNAs) 7.1.4.1 Biogenesis of miRNAs and siRNAs 7.1.4.2 Working mechanism of miRNAs and siRNAs 7.1.4.3 Expression profile of miRNAs in disease pathology 7.1.4.4 miRNAs and siRNAs—from bench to clinic 7.1.4.4.1 Miravirsen for the treatment of Hepatitis C 7.1.4.4.2 MRX34 as cancer therapeutic 7.1.4.4.3 OsteomiR and ThrombomiR as diagnostic markers 7.1.4.4.4 miRView Meso and miRView mets as diagnostic markers 7.1.4.4.5 Patisiran (or ONPATTRO) for the treatment of hereditary TTR-mediated amyloidosis 7.1.4.4.6 Givosiran (or GIVLAARI) for the treatment of acute hepatic porphyria 7.1.4.4.7 QPI1007 for the treatment of nonarteritic anterior ischemic optic neuropathy 7.1.5 Long noncoding RNAs 7.1.5.1 Biogenesis of lncRNAs 7.1.5.2 Working mechanisms of lncRNAs 7.1.5.3 Expression profile of lncRNAs in disease pathology 7.1.5.4 lncRNAs—from bench to clinic 7.1.5.4.1 Inodiftagene vixteplasmid therapy (BC-819) for bladder cancer 7.1.5.4.2 OPK88001 (CUR-1916) for Dravet syndrome 7.1.5.4.3 PCA3 as a diagnostic marker for prostate cancer 7.2 Patent landscape of noncoding RNA 7.3 Bottlenecks in the use of noncoding RNAs as biomarkers/therapeutics 7.4 Conclusions and future perspectives References 8 Peptide-based hydrogels for biomedical applications 8.1 Introduction 8.2 Peptide-based hydrogelators 8.2.1 β-Sheet forming peptides 8.2.1.1 Peptides end-capped with aromatic moieties 8.2.1.2 Amyloid peptides 8.2.1.3 Designed peptides without aromatic end-caps 8.2.1.4 β-Turn-containing peptides 8.2.1.5 Peptide amphiphiles and amphiphilic peptides 8.2.1.5.1 Peptide amphiphiles 8.2.1.5.2 Amphiphilic peptides 8.2.1.5.3 PEGylated peptides 8.2.2 α-Helical peptides 8.3 Biomedical applications 8.3.1 Therapeutic delivery 8.3.1.1 Small molecules 8.3.1.2 Vaccine adjuvant and macromolecule delivery 8.3.1.3 Therapeutic secretions from encapsulated cells 8.3.2 Scaffold for regenerative medicine 8.3.3 Wound dressing 8.3.4 Antimicrobial agents 8.4 Conclusion, limitations, and future directions References 9 Bispecific antibodies: A promising entrant in cancer immunotherapy 9.1 Introduction 9.2 Evolution of bispecific antibodies 9.2.1 Different formats of bispecific antibodies 9.2.2 Mechanism of action 9.2.2.1 Bispecific T-cell Engager 9.2.2.2 Immune payloads 9.2.2.3 Immune checkpoint blockade inhibitors 9.3 Production of bispecific antibodies 9.3.1 Hybrid hybridoma (quadroma technology) 9.3.2 Knob-into-hole approach 9.3.3 CrossMab approach 9.3.4 Chemical conjugation 9.3.4.1 Case study: blinatumomab/MT103 9.3.4.2 Molecular design 9.3.4.3 Manufacturing 9.3.4.4 Characterization 9.3.4.5 Purification of blinatumomab 9.4 Biomarkers in immunotherapy at a glance 9.4.1 Biomarkers for breast cancer 9.4.2 Biomarkers for prostate cancer 9.4.3 Biomarkers for checkpoint blockade immunotherapy 9.5 Engineering of therapeutic protein 9.5.1 Binding affinity enhancement 9.5.2 Immunogenicity minimization 9.5.3 Stability enhancement and half-life extension 9.6 Market analysis: past, present and future 9.7 Future challenges and opportunities 9.8 Conclusion References 10 Emerging therapeutic modalities against malaria 10.1 Introduction 10.2 Heme-detoxification drugs 10.3 Drugs targeting DNA or protein synthesis 10.4 Drugs targeting membrane transporters 10.5 Natural products 10.6 Protein-based malaria vaccines 10.7 Nucleic acid vaccines for the new era 10.7.1 DNA-based vaccines 10.7.2 RNA-based vaccines 10.8 Biological therapeutics 10.9 Conclusion References 11 Translational bioinformatics: An introduction 11.1 Introduction 11.2 The era of omics and big data: data mining and biomedical data integration 11.2.1 Data acquisition and warehousing 11.2.2 Data integration 11.2.3 Data mining 11.3 TBI in biomarker discovery 11.4 Computer-aided drug discovery 11.5 Artificial intelligence-based approach in TBI 11.5.1 Complex disease analysis using ML 11.5.2 Illustrious examples of ML in translational research 11.6 The implication of TBI in precision medicine 11.6.1 Data-driven precision medicine initiatives 11.6.2 Future prospects of transitional bioinformatics in personalized medicine 11.7 Conclusion References 12 Pharmacodynamic biomarker for Hepatocellular carcinoma C: Model-based evaluation for pharmacokinetic–pharmacodynamic res... 12.1 Hepatocellular carcinoma 12.1.1 Possible risk factors of hepatocellular carcinoma 12.1.2 Stages of hepatocellular carcinoma 12.1.2.1 NAFLD 12.1.2.2 Nonalcoholic steatohepatitis/fibrosis 12.1.2.3 Cirrhosis 12.1.3 Challenges in therapeutic and medicinal drug treatment for hepatocellular carcinoma 12.2 Pharmacokinetic and pharmacodynamic profiles (PK–PD) 12.2.1 Pharmacokinetic profile (PK) 12.2.2 Pharmacodynamics (PD) 12.3 Pharmacokinetic and pharmacodynamic models 12.3.1 Compartmental models 12.3.2 Direct pharmacokinetic and pharmacodynamic models 12.3.3 Indirect pharmacokinetic and pharmacodynamic models 12.4 Advantages of pharmacokinetic and pharmacodynamic modeling 12.5 Development of pharmacodynamic (PD) biomarker in hepatocellular carcinoma 12.5.1 Proteomic approach for identification of pharmacodynamic biomarkers 12.5.2 Therapeutic outcome using PD biomarker 12.6 Pharmacokinetic and pharmacodynamic drug responses 12.7 Conclusions References 13 System biology and synthetic biology 13.1 Introduction 13.2 System biology 13.2.1 Central principles of scientific approaches to biology systems 13.2.2 Fields in therapeutic applications system biology 13.2.2.1 Systems medicine 13.2.2.2 Systems pharmacology 13.3 Synthetic biology 13.3.1 Role of synthetic biology in understanding disease mechanisms 13.3.2 Synthetic biology in drug discovery, development, and delivery 13.3.3 Role of synthetic biology in personalized medicine 13.3.4 Regulation and ethical considerations of synthetic biology 13.4 Conclusion References 14 Translational research in drug discovery: Tiny steps before the giant leap 14.1 Introduction 14.2 Tools involved in translation drug discovery 14.3 Recent successful advances in translation drug discovery 14.3.1 Cancer 14.3.2 Diabetes 14.3.3 Acquired immunodeficiency syndrome 14.3.4 Autoimmune disorders 14.3.5 Neurological disorder 14.3.6 Cardiovascular disease (CVD) 14.4 Opportunities in translation drug discovery 14.5 Challenges in translation drug discovery 14.6 Approaches to boost translational drug discovery 14.7 Conclusion 14.8 Future perspective References 15 FLAGSHIP: A novel drug discovery platform originating from the “dark matter of the genome” 15.1 Introduction 15.2 Designing novel therapeutic peptides from dark matter of the genome 15.2.1 Antimicrobial peptides 15.2.2 Antimalarial peptides 15.2.3 Anti-Alzheimer peptides 15.2.4 Drawbacks of peptides therapeutics 15.2.5 Future applications 15.3 Pseudogenes: a potential biotherapeutic target 15.3.1 Pseudogene-directed gene regulation References 16 Role of shared research facilities/core facilities in translational research 16.1 Introduction: socioeconomic impact of translational research 16.1.1 Challenges faced in translational research 16.2 Core facility: shared research–shared cost 16.2.1 Core facilities of prime significance in translational research 16.3 Research and development supporting mechanism: environmental scan (the United States and Canada) 16.3.1 Supporting translational research through core facilities in the United States—from past to present 16.3.2 Canada’s ecosystem of translational research and funding mechanism 16.3.3 Highlights around the world 16.3.3.1 Funding mechanism for research and innovation 16.3.3.2 Awareness of networking and engagement 16.3.4 Glimpses of global research and development expenditure 16.4 Efficiencies and lean practices in research management 16.4.1 Core facilities business model 16.4.2 Governance model for core facility 16.4.3 Core facilities and research outcome 16.5 Final notes: learnings for future 16.5.1 Integration of core facilities within the institutional strategic plan 16.5.2 Comprehensive availability of infrastructure inventory 16.5.3 Impact measurement References 17 A new TOPSIS-based approach to evaluate the economic indicators in the healthcare system and the impact of biotechnology 17.1 Introduction 17.2 Technique for order of preference by similarity to ideal solution approach 17.2.1 Metric space 17.2.2 New technique for order of preference by similarity to ideal solution approach 17.3 Methodology 17.3.1 Selection of criteria 17.3.2 Selection of indicators 17.3.3 Application of new technique for order of preference by similarity to ideal solution approach 17.3.4 Analysis of sensitivity 17.4 Result and discussion 17.4.1 Result from technique for order of preference by similarity to ideal solution 1 17.4.2 Result from technique for order of preference by similarity to ideal solution 17.4.3 Result from sensitivity analysis 17.5 Conclusion References Glossary Index Cover Back