دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Usha Kiran (editor), Malik Zainul Abdin (editor), Kamaluddin (editor) سری: ISBN (شابک) : 0128186321, 9780128186329 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 336 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Transgenic Technology Based Value Addition in Plant Biotechnology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارزش افزوده مبتنی بر فناوری تراریخته در بیوتکنولوژی گیاهی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ارزش افزوده مبتنی بر فناوری تراریخته در بیوتکنولوژی گیاهی اصول، روششناسی و کاربردهای فناوریهای تراریخته را مورد بحث قرار میدهد. این کتاب با روشهای گام به گام در تکنیکهای ویرایش ژنوم و طیف وسیعی از کاربردهای بالقوه، از بهبود عملکرد محصول گرفته تا افزایش اثربخشی درمانی، مرجع یک مرحلهای برای فناوریهای ویرایش ژن گیاهی است. این مورد توجه ویژه ای برای محققان علاقه مند به بیوتکنولوژی گیاهی و ژنتیک گیاهی و همچنین دانشمندان کشاورزی و کسانی است که به گیاهان دارویی علاقه دارند.
Transgenic Technology Based Value Addition in Plant Biotechnology discusses the principles, methodology and applications of transgenic technologies. With step-by-step methods on genome editing techniques and a range of potential applications, from improving crop yield to increasing therapeutic efficacy, this book is a one-stop reference for plant gene editing technologies. It will be of particular interest to researchers interested in plant biotechnology and plant genetics, as well as agricultural scientists and those concerned with medicinal plants.
Cover Transgenic Technology Based Value Addition in Plant Biotechnology Copyright Contents List of Contributors Preface one Bioprospecting of biodiversity for improvement of agronomic traits in plants 1.1 Salinity 1.2 Drought 1.3 Low temperature 1.4 Quantitative trait locus–based analysis of traits 1.5 Disease tolerance Acknowledgment References Further reading two Plant tissue culture: agriculture and industrial applications 2.1 Introduction 2.2 Micropropagation as a multiplication method 2.2.1 Stage 0: Preparation of donor plant 2.2.2 Stage I: Initiation stage 2.2.3 Stage II: Multiplication stage 2.2.4 Stage III: Rooting stage 2.2.5 Stage IV: Acclimatization stage 2.3 Organ cultures 2.4 Somatic embryogenesis and synthetic seeds 2.5 Haploid development via tissue culture 2.6 Pathogen-free plant propagation 2.7 Tissue culture and plant breeding 2.8 Plant tissue culture and development of transgenic plants 2.9 Somaclonal variation and its importance in plant improvement 2.10 Protoplast culture and somatic hybridization 2.11 Elicitation for enrichment of phytocompounds 2.12 Precursor addition 2.13 Hairy root culture and genetic manipulation 2.14 Endophytes and secondary metabolites 2.15 Bioreactor scaling 2.16 Immobilization scaling 2.17 In vitro germplasm storage 2.18 Conclusion and future perspective References Three Genome editing technologies for value-added traits in plants 3.1 Introduction 3.2 Techniques of genome editing 3.2.1 Zinc-finger nucleases 3.2.2 Transcription activator-like effector nucleases 3.2.3 Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR associated) 3.3 Application of genome editing systems 3.3.1 Multiplexing and trait stacking 3.3.2 High-throughput mutant libraries 3.3.3 Gene regulation 3.3.4 Targeted structural changes in crop species 3.4 Conclusion and future perspectives References four Bioinformatic tools to understand structure and function of plant proteins 4.1 Introduction 4.2 In silico structural and functional characterization proteins 4.3 Sequence-based approach 4.3.1 Biophysical characterization of proteins 4.3.2 Structure prediction 4.3.2.1 Secondary structure prediction 4.3.2.2 Tertiary structure prediction 4.3.2.3 Model validation and evaluation 4.4 Function prediction 4.4.1 Fold recognition/assignment 4.4.2 Structure-based function prediction 4.4.3 Active site prediction 4.5 Summary References five Transgenic technology for efficient abiotic stress tolerance in plants 5.1 Introduction 5.2 Transgenic approaches for engineering heat and cold tolerance in plants 5.3 Transgenic approaches for engineering salinity stress tolerance in plants 5.4 Transgenic approaches for engineering drought stress tolerance in plants 5.5 Transgenic approaches for increased flooding stress tolerance in plants 5.6 Improving plant tolerance to nutrient deficiency through genetic engineering 5.7 Improving plant tolerance to heavy metal stress tolerance through transgenic approaches 5.8 Conclusion 5.9 Future prospects Acknowledgments References six Transgenic technologies for efficient insect pest management in crop plants 6.1 Introduction 6.2 Bt genes 6.2.1 Bt strains and toxins 6.2.2 Applications 6.3 First-generation genome editing technology 6.3.1 RNA interference 6.3.2 RNAi pathways and mechanism 6.3.3 Oral delivery method of dsRNA 6.3.3.1 Sprayable RNA interference approach 6.3.3.2 Nanoparticles-coated RNAi 6.3.4 Plant-mediated RNAi 6.4 Second-generation genome editing technology 6.5 CRISPR against insects 6.6 Nematode resistance in crop plants 6.7 Conclusions Acknowledgment References seven Transgenic plants with improved nutrient use efficiency 7.1 Nitrogen 7.1.1 Nitrogen use efficiency 7.1.2 Transgenic crops with elevated nitrogen use efficiency 7.2 Phosphorus 7.2.1 Phosphorus utilization efficiency 7.2.2 Transgenic with elevated phosphorus utilization efficiency 7.3 Sulfur 7.3.1 Transgenic with elevated SUE References eight Genome editing of staple crop plants to combat iron deficiency 8.1 Introduction 8.2 Iron uptake and transport 8.2.1 Root uptake: iron uptake Strategy I and Strategy II 8.2.2 Chelators and long-distance transport of iron 8.2.3 Iron storage and vacuole sequestration 8.3 Genetic engineering to improve iron content in crops 8.3.1 Enhancing iron storage 8.3.2 Increasing iron translocation 8.3.3 Improving iron uptake 8.3.4 Multigene expression 8.4 Conclusion References nine Transgenic technology to improve therapeutic efficacy of medicinal plants 9.1 History of medicinal plants and natural products 9.2 Natural products: biosynthesis and classification 9.2.1 Terpenes 9.2.2 Alkaloids 9.2.3 Phenolics 9.3 Use of medicinal plants and secondary metabolites in traditional and modern medicine 9.4 Technologies for enhancement of secondary metabolites 9.4.1 Elicitors 9.4.1.1 Abiotic elicitors 9.4.1.2 Biotic elicitors 9.4.2 Homologous overexpression of therapeutic molecule/secondary metabolite biosynthesis key genes 9.4.3 Ectopic expression of genes to produce therapeutic molecule/secondary metabolite 9.4.4 Role of miRNAs in increasing the production of secondary metabolites 9.4.5 Artificial miRNAs for secondary metabolites enhancement 9.4.6 Regulating the expression of transcription factors 9.4.7 Regulating the endogenous levels of phytohormones involved in terpenoid biosynthesis 9.4.8 Regulating interrelated primary metabolic pathways 9.5 New approaches of engineering plant metabolic pathways to enhance secondary metabolites References ten Application of transgenic technologies in biofuel production through photosynthetic chassis—new paradigms from gene min... 10.1 Introduction 10.2 Metabolic engineering and synthetic biology 10.3 Improving photosynthesis 10.4 Formation of essential products via photosynthetic chassis 10.4.1 Sugars 10.4.2 Lipids 10.5 Terpenes 10.6 Muconic acid 10.7 Gene mining to genome editing 10.8 Challenges and future opportunities Acknowledgments References eleven Genetic engineering of horticultural crops contributes to the improvement of crop nutritional quality and shelf life 11.1 Introduction 11.2 Conventional strategies to prolong the shelf life 11.3 The metabolic basis underlying fruit ripening and shelf life 11.4 Metabolic alterations incorporating the increased shelf life 11.5 Transgenic technology as a promising tool for crop nutritional quality and shelf life improvements 11.6 Resistance to biotic stress factors 11.7 Resistance to abiotic stress factors 11.8 Biofortification of fruits and vegetables 11.9 Genome editing as an efficient approach to develop crops with better nutritional qualities 11.10 Commercialization of GM fruits and vegetables 11.11 Conclusion References twelve Transgenic food crops: public acceptance and IPR 12.1 Transgenic technology for genetic modification of plants 12.2 Adoption and commercial benefits of biotech crops 12.3 Transgenic hybrids in India 12.4 Perceived risks of genetically modified crops 12.4.1 Consumption of foreign DNA 12.4.2 Allergenicity 12.4.3 Horizontal transfer of genetic material 12.4.4 Super plants an environmental risk 12.4.5 Effect on nontarget organism 12.4.6 Contamination of environment with genetically modified proteins 12.5 Safety assessment of genetically modified technology 12.5.1 Codex Alimentarius and Codex Alimentarius Commission 12.5.2 Framework for safety assessment 12.6 Assessment of possible allergenicity 12.6.1 Source of the gene 12.6.2 Sequence homology studies 12.6.3 Physiochemical stability 12.6.4 Serum screening 12.6.5 Testing models 12.7 Potential accumulation of substances significant to human health 12.8 Intellectual property rights in transgenic agriculture biotechnology 12.8.1 Trade secrets 12.8.2 Geographical indications 12.8.3 Trademarks 12.8.4 Copyright and related rights 12.8.5 International organization and agreements for intellectual property rights protection 12.8.6 Patents 12.8.7 Indian legislation on Protection of Plant Varieties and Farmers’ Rights 12.9 Conclusion and future prospects References Index Back Cover