دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Denis Rothman
سری:
ISBN (شابک) : 1800568630, 9781800568631
ناشر: Packt Publishing Ltd
سال نشر: 2021
تعداد صفحات: 385
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترانسفورماتورها برای پردازش زبان طبیعی: ساخت معماری های شبکه عصبی عمیق برای NLP با پایتون، PyTorch، TensorFlow، BERT، RoBERTa و موارد دیگر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با تسلط بر جهش کوانتومی مدلهای شبکه عصبی ترانسفورماتور، به یک متخصص درک زبان هوش مصنوعی تبدیل شوید
ویژگیهای کلیدیمعماری ترانسفورماتور ثابت کرده است که در عملکرد بهتر از مدل های کلاسیک RNN و CNN انقلابی است. امروزه در حال استفاده است. Transformers for Natural Language Processing با رویکردی کاربردی، یادگیری عمیق را برای ترجمههای ماشینی، گفتار به متن، متن به گفتار، مدلسازی زبان، پاسخگویی به سؤال و بسیاری دیگر از حوزههای NLP بررسی میکند. با ترانسفورماتورها.
این کتاب شما را از طریق NLP با پایتون راهنمایی میکند و مدلها و مجموعههای داده برجسته در معماری ترانسفورماتور ایجاد شده توسط پیشگامانی مانند Google، Facebook، Microsoft، OpenAI و Hugging Face را بررسی میکند.
کتاب شما را در سه مرحله آموزش می دهد. مرحله اول شما را با معماری ترانسفورماتور آشنا می کند، که از ترانسفورماتور اصلی شروع می شود، قبل از اینکه به مدل های RoBERTa، BERT و DistilBERT بروید. شما روش های آموزشی برای ترانسفورماتورهای کوچکتر را کشف خواهید کرد که می توانند در برخی موارد بهتر از GPT-3 عمل کنند. در مرحله دوم، ترانسفورماتورها را برای درک زبان طبیعی (NLU) و تولید زبان طبیعی (NLG) اعمال خواهید کرد. در نهایت، مرحله سوم به شما کمک می کند تا تکنیک های پیشرفته درک زبان مانند بهینه سازی مجموعه داده های شبکه های اجتماعی و شناسایی اخبار جعلی را درک کنید.
در پایان این کتاب NLP، شما تبدیل کننده ها را از دیدگاه علم شناختی درک خواهید کرد و خواهید توانست در استفاده از مدلهای ترانسفورماتور از پیش آموزشدیدهشده توسط غولهای فناوری در مجموعههای داده مختلف مهارت دارد.
آنچه یاد خواهید گرفتاز آنجایی که کتاب برنامه نویسی اولیه را آموزش نمی دهد، برای یادگیری شبکه های عصبی، Python، PyTorch و TensorFlow باید با آنها آشنا باشید. پیاده سازی با ترانسفورماتور
خوانندگانی که می توانند بیشترین بهره را از این کتاب ببرند شامل یادگیری عمیق هستند
Become an AI language understanding expert by mastering the quantum leap of Transformer neural network models
Key FeaturesThe transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers.
The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face.
The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification.
By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets.
What you will learnSince the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers.
Readers who can benefit the most from this book include deep learning & NLP practitioners, data analysts and data scientists who want an introduction to AI language understanding to process the increasing amounts of language-driven functions.
Cover Copyright Packt Page Contributors Table of Contents Preface Chapter 1: Getting Started with the Model Architecture of the Transformer The background of the Transformer The rise of the Transformer: Attention Is All You Need The encoder stack Input embedding Positional encoding Sub-layer 1: Multi-head attention Sub-layer 2: Feedforward network The decoder stack Output embedding and position encoding The attention layers The FFN sub-layer, the Post-LN, and the linear layer Training and performance Before we end the chapter Summary Questions References Chapter 2: Fine-Tuning BERT Models The architecture of BERT The encoder stack Preparing the pretraining input environment Pretraining and fine-tuning a BERT model Fine-tuning BERT Activating the GPU Installing the Hugging Face PyTorch interface for BERT Importing the modules Specifying CUDA as the device for torch Loading the dataset Creating sentences, label lists, and adding BERT tokens Activating the BERT tokenizer Processing the data Creating attention masks Splitting data into training and validation sets Converting all the data into torch tensors Selecting a batch size and creating an iterator BERT model configuration Loading the Hugging Face BERT uncased base model Optimizer grouped parameters The hyperparameters for the training loop The training loop Training evaluation Predicting and evaluating using the holdout dataset Evaluating using Matthews Correlation Coefficient The score of individual batches Matthews evaluation for the whole dataset Summary Questions References Chapter 3: Pretraining a RoBERTa Model from Scratch Training a tokenizer and pretraining a transformer Building KantaiBERT from scratch Step 1: Loading the dataset Step 2: Installing Hugging Face transformers Step 3: Training a tokenizer Step 4: Saving the files to disk Step 5: Loading the trained tokenizer files Step 6: Checking resource constraints: GPU and CUDA Step 7: Defining the configuration of the model Step 8: Reloading the tokenizer in transformers Step 9: Initializing a model from scratch Exploring the parameters Step 10: Building the dataset Step 11: Defining a data collator Step 12: Initializing the trainer Step 13: Pretraining the model Step 14: Saving the final model (+tokenizer + config) to disk Step 15: Language modeling with FillMaskPipeline Next steps Summary Questions References Chapter 4: Downstream NLP Tasks with Transformers Transduction and the inductive inheritance of transformers The human intelligence stack The machine intelligence stack Transformer performances versus Human Baselines Evaluating models with metrics Accuracy score F1-score Matthews Correlation Coefficient (MCC) Benchmark tasks and datasets From GLUE to SuperGLUE Introducing higher Human Baseline standards The SuperGLUE evaluation process Defining the SuperGLUE benchmark tasks BoolQ Commitment Bank (CB) Multi-Sentence Reading Comprehension (MultiRC) Reading Comprehension with Commonsense Reasoning Dataset (ReCoRD) Recognizing Textual Entailment (RTE) Words in Context (WiC) The Winograd Schema Challenge (WSC) Running downstream tasks The Corpus of Linguistic Acceptability (CoLA) Stanford Sentiment TreeBank (SST-2) Microsoft Research Paraphrase Corpus (MRPC) Winograd schemas Summary Questions References Chapter 5: Machine Translation with the Transformer Defining machine translation Human transductions and translations Machine transductions and translations Preprocessing a WMT dataset Preprocessing the raw data Finalizing the preprocessing of the datasets Evaluating machine translation with BLEU Geometric evaluations Applying a smoothing technique Chencherry smoothing Translations with Trax Installing Trax Creating a Transformer model Initializing the model using pretrained weights Tokenizing a sentence Decoding from the Transformer De-tokenizing and displaying the translation Summary Questions References Chapter 6: Text Generation with OpenAI GPT-2 and GPT-3 Models The rise of billion-parameter transformer models The increasing size of transformer models Context size and maximum path length Transformers, reformers, PET, or GPT? The limits of the original Transformer architecture Running BertViz The Reformer Pattern-Exploiting Training (PET) The philosophy of Pattern-Exploiting Training (PET) It\'s time to make a decision The architecture of OpenAI GPT models From fine-tuning to zero-shot models Stacking decoder layers Text completion with GPT-2 Step 1: Activating the GPU Step 2: Cloning the OpenAI GPT-2 repository Step 3: Installing the requirements Step 4: Checking the version of TensorFlow Step 5: Downloading the 345M parameter GPT-2 model Steps 6-7: Intermediate instructions Steps 7b-8: Importing and defining the model Step 9: Interacting with GPT-2 Training a GPT-2 language model Step 1: Prerequisites Steps 2 to 6: Initial steps of the training process Step 7: The N Shepperd training files Step 8: Encoding the dataset Step 9: Training the model Step 10: Creating a training model directory Context and completion examples Generating music with transformers Summary Questions References Chapter 7: Applying Transformers to Legal and Financial Documents for AI Text Summarization Designing a universal text-to-text model The rise of text-to-text transformer models A prefix instead of task-specific formats The T5 model Text summarization with T5 Hugging Face Hugging Face transformer resources Initializing the T5-large transformer model Getting started with T5 Exploring the architecture of the T5 model Summarizing documents with T5-large Creating a summarization function A general topic sample The Bill of Rights sample A corporate law sample Summary Questions References Chapter 8: Matching Tokenizers and Datasets Matching datasets and tokenizers Best practices Step 1: Preprocessing Step 2: Post-processing Continuous human quality control Word2Vec tokenization Case 0: Words in the dataset and the dictionary Case 1: Words not in the dataset or the dictionary Case 2: Noisy relationships Case 3: Rare words Case 4: Replacing rare words Case 5: Entailment Standard NLP tasks with specific vocabulary Generating unconditional samples with GPT-2 Controlling tokenized data Generating trained conditional samples T5 Bill of Rights Sample Summarizing the Bill of Rights, version 1 Summarizing the Bill of Rights, version 2 Summary Questions References Chapter 9: Semantic Role Labeling with BERT-Based Transformers Getting started with SRL Defining Semantic Role Labeling Visualizing SRL Running a pretrained BERT-based model The architecture of the BERT-based model Setting up the BERT SRL environment SRL experiments with the BERT-based model Basic samples Sample 1 Sample 2 Sample 3 Difficult samples Sample 4 Sample 5 Sample 6 Summary Questions References Chapter 10: Let Your Data Do the Talking: Story, Questions, and Answers Methodology Transformers and methods Method 0: Trial and error Method 1: NER first Using NER to find questions Location entity questions Person entity questions Method 2: SRL first Question-answering with ELECTRA Project management constraints Using SRL to find questions Next steps Exploring Haystack with a RoBERTa model Summary Questions References Chapter 11: Detecting Customer Emotions to Make Predictions Getting started: Sentiment analysis transformers The Stanford Sentiment Treebank (SST) Sentiment analysis with RoBERTa-large Predicting customer behavior with sentiment analysis Sentiment analysis with DistilBERT Sentiment analysis with Hugging Face\'s models list DistilBERT for SST MiniLM-L12-H384-uncased RoBERTa-large-mnli BERT-base multilingual model Summary Questions References Chapter 12: Analyzing Fake News with Transformers Emotional reactions to fake news Cognitive dissonance triggers emotional reactions Analyzing a conflictual Tweet Behavioral representation of fake news A rational approach to fake news Defining a fake news resolution roadmap Gun control Sentiment analysis Named entity recognition (NER) Semantic role labeling (SRL) Reference sites COVID-19 and former President Trump\'s Tweets Semantic Role Labeling (SRL) Before we go Looking for the silver bullet Looking for reliable training methods Summary Questions References Appendix: Answers to the Questions Chapter 1, Getting Started with the Model Architecture of the Transformer Chapter 2, Fine-Tuning BERT Models Chapter 3, Pretraining a RoBERTa Model from Scratch Chapter 4, Downstream NLP Tasks with Transformers Chapter 5, Machine Translation with the Transformer Chapter 6, Text Generation with OpenAI GPT-2 and GPT-3 Models Chapter 7, Applying Transformers to Legal and Financial Documents for AI Text Summarization Chapter 8, Matching Tokenizers and Datasets Chapter 9, Semantic Role Labeling with BERT-Based Transformers Chapter 10, Let Your Data Do the Talking: Story, Questions, and Answers Chapter 11, Detecting Customer Emotions to Make Predictions Chapter 12, Analyzing Fake News with Transformers Other Books You May Enjoy Index