دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ژنتیک ویرایش: نویسندگان: Mohammad Ajmal Ali. Joongku Lee سری: ISBN (شابک) : 0323918107, 9780323918107 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 530 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Transcriptome Profiling: Progress and Prospects به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نمایه سازی رونوشت: پیشرفت و چشم انداز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پروفایل رونویسی: پیشرفت و چشمانداز به خوانندگان در ارزیابی و تفسیر تعداد زیادی از ژنها، تا و شامل کل ژنوم کمک میکند. این بینشهای کلیدی را در مورد آخرین ابزارها و تکنیکهای مورد استفاده در رونویسی و موضوعات مرتبط آن ارائه میکند که میتواند یک تصویر کلی از جزء کامل RNA یک سلول را در یک زمان معین نشان دهد. این عکس فوری، به نوبه خود، تمایز بین انواع سلول های مختلف، وضعیت های مختلف بیماری، و زمان های مختلف در طول توسعه را امکان پذیر می کند. تجزیه و تحلیل رونوشت یک حوزه کلیدی از تحقیقات بیولوژیکی برای دهه ها بوده است. فنآوریهای توالییابی نسل بعدی با فراهم کردن فرصتهایی برای بررسیهای چند بعدی رونوشتهای سلولی که در آن دادههای بیان با توان بالا در وضوح تک پایه به دست میآیند، تحولی در ترانسکریپتومیک ایجاد کردهاند. تجزیه و تحلیل رونویسی از تشخیص مولکولهای RNA منفرد تا پروفایل بیان ژن در مقیاس بزرگ و طرحهای حاشیهنویسی ژنوم تکامل یافته است. نوشته شده توسط تیمی از متخصصان جهانی، موضوعات کلیدی در Transcriptome Profiles شامل خصوصیات رونوشت، تجزیه و تحلیل بیان رونوشت ها، رونوشت و تنظیم ژن، پروفایل رونوشت و سلامت انسان، رونوشت شناسی گیاهان دارویی است. ، ترانس کریپتومیکس و مهندسی ژنتیک، ترانس کریپتومیکس در کشاورزی، و ترانس کریپتومیکس فیلوترانسکریپتومیکس.
Transcriptome Profiling: Progress and Prospects assists readers in assessing and interpreting a large number of genes, up to and including an entire genome. It provides key insights into the latest tools and techniques used in transcriptomics and its relevant topics which can reveal a global snapshot of the complete RNA component of a cell at a given time. This snapshot, in turn, enables the distinction between different cell types, different disease states, and different time points during development. Transcriptome analysis has been a key area of biological inquiry for decades. The next-generation sequencing technologies have revolutionized transcriptomics by providing opportunities for multidimensional examinations of cellular transcriptomes in which high-throughput expression data are obtained at a single-base resolution. Transcriptome analysis has evolved from the detection of single RNA molecules to large-scale gene expression profiling and genome annotation initiatives. Written by a team of global experts, key topics in Transcriptome Profiling include transcriptome characterization, expression analysis of transcripts, transcriptome and gene regulation, transcriptome profiling and human health, medicinal plants transcriptomics, transcriptomics and genetic engineering, transcriptomics in agriculture, and phylotranscriptomics.
Front Cover Transcriptome Profiling Copyright Page Contents List of contributors Preface 1 Transcriptomic analysis of genes: expression and regulation 1.1 Techniques for transcription analysis and RNA-seq profiling 1.2 Sequencing platforms and gene analysis workflow for genome and transcriptome assembly 1.2.1 Fungal genomes and transcriptomes 1.3 Expression and differential expression analysis: methods and programs 1.3.1 Counting methods 1.3.2 Data normalization and statistical procedures 1.3.3 Comparison of different expression profiles 1.3.4 Validation 1.4 Data integration techniques for coexpression network construction 1.4.1 Coexpression networks 1.5 Gene regulation studies on bacteria and fungi 1.5.1 Expression studies on fungi/host interactions 1.5.2 Expression analysis to study fungal responses to compounds/detoxification 1.6 Application of transcriptomics to the study of small RNAs, transcription factors, heat shock factors, kinases (MAPK), P... 1.6.1 Small RNAs 1.6.2 Transcription factors 1.6.3 Mitogen-activated protein kinase cascade 1.6.4 Fungal metabolites 1.7 Transcriptomic studies of genetic engineering approaches 1.8 Application of transcriptomics in the context of diseases and clinical studies 1.8.1 RNA-seq for disease research 1.8.2 Understanding microbial infections using transcriptional analysis References 2 Transcriptomics and genetic engineering 2.1 Introduction 2.2 History 2.3 Transcriptomics 2.4 Gene ontology 2.5 Genetic engineering approaches to target the transcriptome 2.6 Model organisms for transcriptome research 2.7 Challenges and conclusion Authors contributions Financial support Competing interests References Further reading 3 Single-cell transcriptomics 3.1 Introduction 3.2 Measurement techniques in single-cell transcriptomics 3.2.1 Spatial single-cell methods 3.2.2 Transcriptomic analysis with 10X genomics platform 3.3 Noise in single-cell sequencing 3.3.1 Problem with zeros 3.3.2 Experimental protocols used to decrease the noise level 3.4 Preprocessing of 10X scRNAseq data 3.4.1 From raw sequences to gene−cell matrix 3.4.2 Quality control 3.4.3 Data normalization 3.4.4 Batch effect removal 3.5 Analysis of 10X scRNAseq data 3.5.1 Cross-platform/species data integration 3.5.2 Searching for differentially expressed genes 3.5.3 Cell clustering 3.5.4 Cellular trajectory inference References 4 Time course gene expression experiments 4.1 Introduction 4.2 Designing time course experiments 4.3 A holistic method to analyze time course gene expression experiments 4.3.1 Standardized expression profiles for interpretation of expression profiles 4.3.2 Ternary models simplify the expression space 4.3.3 Standardized expression profile groups can be tested to investigate relevant differences 4.3.4 Standardized expression profiles allow the discovery of enriched gene ontology aspects and metabolic pathways 4.4 Conclusions and perspectives 4.5 Appendix: standardized expression profile estimation 4.5.1 Statistical tests 4.5.2 Ternary model and standardized expression profile estimation References 5 Measurement and meaning in gene expression evolution 5.1 Introduction 5.1.1 Extended concepts in evolution 5.2 What is gene expression? 5.2.1 The conditional transfer of sequence information 5.2.2 Phenotypic outcome in regulatory development 5.3 Gene expression evolution 5.3.1 Bias in the sorting of difference-making loci 5.3.2 Bias in the recurrence of phenotypes 5.4 Measuring gene expression 5.4.1 Relative change in mRNA abundance 5.4.2 Coexpression networks 5.4.3 Technological developments 5.5 Measuring gene expression evolution 5.5.1 Divergent phenotypic variance 5.5.2 Divergent interaction networks 5.5.3 Future prospects References 6 G-quadruplexes as key motifs in transcriptomics Abbreviations 6.1 Introduction 6.2 G-quadruplexes 6.3 Approaches to identify G4s 6.4 Functions of G4s 6.4.1 Telomere maintenance 6.4.2 Transcription 6.4.3 mRNA maturation 6.4.4 mRNA localization 6.4.5 Translation 6.4.6 Biology of noncoding RNAs 6.4.7 Epigenetics 6.5 Genome instability associated to G4s 6.6 G4-binding proteins 6.7 G4s’ involvement in disease 6.8 G4 Ligands 6.9 Future perspectives References 7 Spatial transcriptomics 7.1 An introduction to spatial transcriptomics 7.2 Origin of spatial transcriptomics 7.3 Implementation of a spatial transcriptomics study: tools and techniques 7.3.1 Broad overview of spatial transcriptomics techniques 7.3.2 Visium 7.3.3 RNA seqFISH+ 7.3.4 Bioinformatics, image analysis, and visualization tools 7.4 Applications and impact of spatial transcriptomics 7.4.1 Developmental biology 7.4.2 Neurobiology 7.4.3 Skin biology 7.4.4 Regeneration 7.5 Perspectives References 8 Desert plant transcriptomics and adaptation to abiotic stress 8.1 Introduction 8.2 Potential of desert plant research 8.3 Strategies for gene discovery in desert plants 8.4 Current state of desert plant transcriptomics 8.5 Drought stress 8.6 Salinity stress 8.7 Heat and cold stress 8.8 Oxidative stress 8.9 Identification of lncRNA as key regulators in adaptation to abiotic stress 8.9.1 Identification of lncRNAs 8.9.2 Downstream analysis of lncRNAs 8.10 Conclusions and perspectives References 9 Transcriptomics in agricultural sciences: capturing changes in gene regulation during abiotic or biotic stress 9.1 Application of transcriptomics in breeding 9.2 Transcriptomics and plant interactions: from genes to the field 9.2.1 Experimental design 9.2.2 Sequencing 9.2.3 Analysis 9.3 Transcriptomics and breeding of orphan crops 9.4 Transcriptomic technology for gene identification: expression regulation for biotic stress resistance, quality traits, ... 9.5 Advances in transcriptomic analysis of multiple abiotic stresses 9.6 RNA-seq coupled with other genomic tools in agricultural sciences: multiomics technologies to study metabolism during m... References 10 Transcriptomics in response of biotic stress in plants 10.1 Introduction 10.2 Methodology of RNA-seq analysis 10.3 Transcriptome analysis of biotic stress response in crop plants 10.3.1 Transcriptome studies of plant−fungus interactions 10.3.2 Transcriptomics of plant−oomycetes interaction 10.3.3 Transcriptomics of plant−bacteria interaction 10.3.4 Transcriptomics for virus−plant interaction 10.3.5 Transcriptome analysis for other biotic stresses 10.4 Conclusion References 11 Functional genomics to understand the tolerance mechanism against biotic and abiotic stresses in Capsicum species 11.1 Introduction 11.2 Economic and medicinal importance of Capsicum 11.3 Impact of stresses on Capsicum 11.4 Application of omics tools towards understanding the plant responses against various stresses and their tolerance mech... 11.4.1 Genomics 11.4.2 Transcriptomics 11.4.3 Proteomics 11.4.4 Metabolomics 11.4.5 Ionomics 11.4.6 Phosphoproteomics 11.4.7 Integrated omics 11.5 Functional genomics of biotic and abiotic stress responses in Capsicum 11.5.1 Biotic stresses 11.5.1.1 Bacteria 11.5.1.2 Viruses 11.5.1.3 Nematodes 11.5.1.4 Fungi 11.5.2 Abiotic stresses 11.5.2.1 Heat 11.5.2.2 Temperature 11.5.2.3 Cold 11.5.2.4 Salinity 11.5.2.5 Nutrient stress 11.5.2.6 Water stress: drought and submergence/waterlogging 11.5.2.7 Heavy metal stress 11.5.2.8 Light 11.6 Developing stress-tolerant Capsicum cultivars 11.7 Concluding remarks References Further reading 12 Transcriptomic and epigenomic network analysis reveals chicken physiological reactions against heat stress 12.1 Introduction 12.2 The importance of knowing nonadapted and adaptation-specific biological reaction mechanisms 12.3 Strategy 12.4 Comparison of two chicken heart and muscle transcriptome datasets 12.4.1 Datasets 12.4.2 Comparison of transcriptomic datasets 1 and 2 12.4.2.1 Heart tissue highland chicken 12.4.2.2 Heart tissue, the difference between highland and lowland chicken 12.4.2.3 Heart tissue lowland chicken 12.4.2.4 Muscle tissue highland chicken 12.4.2.5 Muscle tissue, the difference between highland and lowland chicken 12.4.2.6 Muscle tissue lowland chicken 12.5 Comparison of transcriptome and epigenome datasets 12.5.1 Dataset 3: Epigenome analysis of heart tissue of experimentally induced heat stress in chicken eggs 12.5.1.1 Lowland chicken heart transcriptomics versus embryonic heart epigenomics 12.5.1.2 Highland chicken heart transcriptomics versus embryonic heart epigenomics 12.5.1.3 Heart tissue difference between highland and lowland chicken versus embryonic heart epigenomics 12.6 General reactions of adapted and not-adapted chicken types to heat stress 12.7 Conclusions Perspectives References 13 Transcriptome-wide identification of immune-related genes after bacterial infection in fish 13.1 Introduction 13.2 Importance of transcriptome in aquaculture 13.3 Concept of transcriptome workflow in fish 13.4 Fish immune response post bacterial infection 13.5 Conclusion References 14 Human transcriptome profiling: applications in health and disease 14.1 Introduction 14.2 A brief history of transcriptomics 14.3 Microarrays 14.3.1 Principles and progress 14.3.2 Methods 14.3.3 Applications of microarray in drug discovery 14.4 RNA-seq 14.4.1 Principles and progress 14.4.2 Methods 14.4.3 Data analysis using RNA-Seq 14.4.3.1 Quality control 14.4.3.2 Alignment 14.4.3.3 Quantification 14.4.3.4 Differential expression 14.4.3.5 Validation 14.4.4 Advantages of RNA-seq technology 14.4.5 Applications of RNA-Seq in drug discovery 14.5 Single-cell transcriptomics 14.5.1 Applications of single-cell transcriptomics 14.6 Conclusion and future perspectives References 15 Transcriptomics to devise human health and disease 15.1 Introduction 15.2 Transcriptomics 15.2.1 Transcriptome profiling using microarrays 15.2.2 Next-generation RNA sequencing 15.2.3 Single-cell and spatial transcriptomics 15.3 Transcriptomics of noncoding RNAs 15.4 Application of transcriptomics 15.5 System biology: integration of omics 15.6 Conclusions References 16 Single-cell/nucleus transcriptomic and muscle pathologies 16.1 Methods and technologies for single-cell/nucleus RNA sequencing 16.1.1 Validation of scRNA-seq results 16.2 Advantages and disadvantages of using single-cell/nucleus analysis 16.3 Different muscles and different functions 16.3.1 Heart 16.3.2 Skeletal muscle 16.3.3 Smooth muscle 16.4 Single-cell/nucleus analysis in skeletal muscle. What does the dimension of the cells (myofibers) allow or not allow t... 16.5 Single-cell/nucleus analysis in heart 16.6 Single-cell analysis in smooth muscles 16.7 Single-cell/nucleus RNA-seq bioinformatics analysis 16.8 Discussion and conclusions References 17 Transcriptomics of intracranial aneurysms 17.1 Introduction 17.2 Intracranial aneurysms 17.3 Transcriptomics of intracranial aneurysms 17.4 Transcriptomics of unruptured and ruptured intracranial aneurysms 17.5 Blood transcriptomic fingerprints of intracranial aneurysms 17.6 Immune cell transcriptomic fingerprints of intracranial aneurysms 17.7 Concluding remarks References 18 Recent advances in transcriptomic biomarker detection for cancer 18.1 Introduction 18.2 The evolution of transcriptomic methods 18.2.1 Microarray 18.2.2 RNA seq 18.2.3 Computational analysis of RNA seq data 18.2.4 Differential gene expression analysis and its application in cancer biomarker detection 18.3 Cancer biomarkers currently in clinical use 18.3.1 Breast cancer 18.3.2 Lung cancer 18.3.3 Colon and rectal cancer 18.3.4 Liver cancer 18.4 Steps of clinical biomarker development in cancer 18.4.1 Preclinical research and biomarker discovery 18.4.2 Validation of cancer biomarker and assay development for clinical use 18.4.3 Retrospective analysis and validation of clinical significance 18.4.4 Cancer control studies 18.5 Cancer data availability in the form of database 18.6 Application of machine learning in biomarker identification 18.6.1 Feature selection algorithms 18.6.2 Classification algorithms 18.6.2.1 Support vector machine 18.6.2.2 Artificial neural networks 18.6.2.3 Decision trees 18.6.2.4 Random forest 18.6.2.5 Ensemble approach 18.7 Conclusion References 19 Future prospects of transcriptomics 19.1 Transcriptome: regulatory mechanisms 19.2 Current perspectives in the field of transcriptomics and health 19.3 Translational transcriptomics of cancer 19.4 Translational transcriptomics of obesity 19.5 Epitranscriptomics 19.6 Types of significant RNA modifications 19.7 Final considerations References Index Back Cover