دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ارتباطات: ارتباطات از راه دور ویرایش: 4th Ed. 2014 نویسندگان: Scott R. Bullock سری: ISBN (شابک) : 1613532032, 9781613532034 ناشر: The Institution of Engineering and Technology سال نشر: 2014 تعداد صفحات: 398 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Transceiver and System Design for Digital Communications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرستنده و گیرنده و طراحی سیستم برای ارتباطات دیجیتال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این ویرایش چهارم یک به روز رسانی گسترده در طراحی فرستنده گیرنده است و دارای فصول جدید مهمی در مورد فناوری نوظهور مهم رادیویی شناختی، سیستم ها و شبکه ها در کاربردهای تجاری است. این کتاب برگرفته از کارگاه های آموزشی متعدد مهندسی، برای طراحان سیستم های ارتباطات بی سیم دیجیتال ایده آل است. طراحی فرستنده و گیرنده به عنوان دستگاهی توصیف می شود که هم سیگنال ها را ارسال و هم دریافت می کند و مکان آن در سیستم ارتباط بی سیم است. فرستنده گیرنده و طراحی سیستم برای ارتباطات دیجیتال، ویرایش 4 به طور قابل توجهی از نسخه های قبلی به روز شده است و کل محتوا برای بهبود جریان کلی کتاب و افزایش درک خواننده سازماندهی مجدد شده است. تکنیکها و طرحهای مختلفی برای تعدیل و ارسال دادههای دیجیتال ارزیابی میشوند و به خوانندگان اجازه میدهند تا درک محکمی از فرآیندهای مورد نیاز برای طراحی مؤثر سیستمهای ارتباطی دادههای بیسیم به دست آورند. این مرجع مهندسی کاربردی طیف گسترده ای از تکنیک های طراحی ارتباط پیوند داده را پوشش می دهد، از جمله: - پیوند بودجه - محدوده دینامیکی و تجزیه و تحلیل سیستم گیرنده ها و فرستنده ها - تکنیکهای مدولاسیون دیجیتال و دمدولاسیون سیستمهای طیف گسترده با کلید شیفت فاز و جهش فرکانس با استفاده از نمودارهای فاز - چند مسیره - به دست آوردن کنترل - یک رویکرد شهودی به احتمال - پارازیت - روش کاهش با استفاده از فرآیندهای تطبیقی مختلف - پیوند داده سیستم های موقعیت یابی جهانی (GPS). - جهت یاب و تداخل سنج - ارتباطات پهن باند و شبکه های خانگی این کتاب برگرفته از کارگاه های آموزشی متعددی است که از طریق دوره های خصوصی به مهندسان آموزش داده شده است. نسخه چهارم برای طراحان سیستم های ارتباطات بی سیم دیجیتال در هر دو بخش تجاری و نظامی، به ویژه مهندسان جدید که به تکنیک های طراحی عملی و درک اساسی سیستم های مدرنی که از فرستنده های گیرنده دیجیتال استفاده می کنند نیاز دارند، جذاب خواهد بود.
This 4th edition is an extensive update on transceiver design and features significant new chapters on the important emerging technology of cognitive radio, systems, and networks in commercial applications. Derived from numerous engineer training workshops, this book is ideal for digital wireless communications system designers. Transceiver design is described as the device that both sends and receives signals and its place within the wireless communication system. Transceiver and System Design for Digital Communications, 4th edition have been significantly updated from the previous editions and the entire content has been reorganised to improve the overall flow of the book and enhance reader understanding. Various techniques and designs are evaluated for modulating and sending digital data, allowing readers to gain a firm understanding of the processes needed to effectively design wireless data link communication systems. This applied engineering reference covers a wide range of data link communication design techniques, including: - link budgets - dynamic range and system analysis of receivers and transmitters - digital modulation and demodulation techniques of phase-shift keyed and frequency hopped spread spectrum systems using phase diagrams - multipath - gain control - an intuitive approach to probability - jamming - reduction method using various adaptive processes - global positioning systems (GPS) data link - direction-finding and interferometers - broadband communications and home networking The book has been derived from numerous training workshops taught to engineers through private courses. The 4th edition will appeal to digital wireless communications system designers in both commercial and military sectors, in particular new engineers requiring practical design techniques and fundamental understanding of modern systems that employ digital transceivers.
1 Transceiver Design 1.1 Frequency of Operation 1.2 Transmitter 1.2.1 Power from the Transmitter 1.2.2 Transmitter Component Losses 1.2.3 Transmitter Line Losses from the Power Amplifier to the Antenna 1.2.4 Transmitter Antenna Gain 1.2.5 Transmitter Antenna Losses 1.2.6 Transmitted Effective Isotropic Radiated Power 1.3 Channel 1.3.1 Free-Space Attenuation 1.3.2 Propagation Losses 1.3.3 Multipath Losses 1.4 Receiver 1.4.1 Receiver Antenna Losses 1.4.2 Receiver Antenna Gain 1.4.3 Receiver Line Losses from the Antenna to the LNA 1.4.4 Receiver Component Losses 1.4.5 Received Signal Power at the Output to the LNA 1.4.6 Receiver Implementation Loss 1.4.7 Received Power for Establishing the Signal-to-Noise Ratio of a System 1.4.8 Received Noise Power 1.4.9 Noise Figure 1.4.10 Received Noise Power at the Detector 1.4.11 Receiver Bandwidth 1.4.12 Received Eb/No at the Detector 1.4.13 Receiver Coding Gain 1.4.14 Required Eb/No 1.5 The Link Budget 1.5.1 Spread Spectrum Systems 1.5.2 Process Gain 26 1.5.3 Received Power for Establishing the Signal-to-Noise Ratio for a Spread Spectrum System 1.5.4 Link Budget Example 1.6 Summary References Problems 2 The Transmitter 2.1 Basic Functions of the Transmitter 2.1.1 Transmit Antenna 2.1.2 Transmit/Receive Device 2.1.3 RF Power Amplifier 2.1.4 Upconverter 2.1.5 Sum and Difference Frequencies Generated in the Upconversion Process 2.1.6 Modulator 2.2 Voltage Standing Wave Ratio 2.2.1 Maximum Power Transfer Principle 2.3 Digital Communications 2.3.1 Digital versus Analog Communications 2.3.2 Software Programmable Radios and Cognitive Radios 2.4 Digital Modulation 2.4.1 Binary Phase-Shift Keying 2.4.2 Differential Phase-Shift Keying 2.4.3 Quadrature Phase-Shift Keying 2.4.4 Offset QPSK 2.4.5 Higher Order PSK 2.4.6 p/4 Differential QPSK 2.4.7 Differential 8-Level PSK 2.4.8 16-Offset Quadrature Amplitude Modulation 2.4.9 Phasor Constellations and Noise Immunity 2.4.10 BPSK versus QPSK Constellation Comparison 2.4.11 Variations in PSK Schemes 2.4.12 Continuous Phase PSK 2.4.13 Spectral Regrowth 2.4.14 Minimum Shift Keying 2.4.15 Frequency-Shift Keying 2.4.16 Sidelobe Reduction Methods 2.4.17 Ideal Shaping Filter 2.5 Direct Sequence Spread Spectrum 2.5.1 Frequency-Hopping Spread Spectrum 2.5.2 Spread Spectrum 2.5.3 Jammer Resistance 2.5.4 Despreading to Realize Process Gain in the Spread Spectrum System 2.5.5 Maximal Length Sequence Codes 2.5.6 Maximal Length PN Code Generator 2.5.7 Maximal Length PN Code Taps 2.5.8 Gold Codes 2.5.9 Other Codes 2.5.10 Spectral Lines in the Frequency Domain 2.6 Other Forms of Spread Spectrum Transmissions 2.6.1 Time Hopping 2.6.2 Chirped-FM 2.7 Multiple Users 2.7.1 Other Methods for Multiuser Techniques 2.7.2 Orthogonal Signals 2.7.3 Quadrature Phase Detection of Two Signals 2.7.4 Orthogonal Frequency Division Multiplexing 2.7.5 Other OFDM Techniques 2.8 Power Control 2.9 Summary References Problems 3 The Receiver 3.1 Superheterodyne Receiver 3.2 Basic Functions of the Receiver 3.3 Receiver Antenna 3.4 Transmit/Receive Device 3.5 Image Reject Filter 3.6 Low-Noise Amplifier 3.7 RF Downconverter 3.8 Mixers 3.8.1 High-Level or Low-Level Mixers 3.8.2 High-Side or Low-Side Injection 3.8.3 Mixer Spur Analysis—Level of Spurious Responses and Intermods 3.8.4 Sixth-Order Analysis 3.9 Automatic Gain Control 3.10 IF Downconverter 3.11 Splitting Signals into Multiple Bands for Processing 3.12 Phase Noise 3.13 Bandwidth Considerations 3.14 Filter Constraints 3.15 Group Delay 3.16 Analog-to-Digital Converter 3.17 Sampling Theorem and Aliasing 3.18 Anti-Aliasing Filter 3.19 Dynamic Range/Minimum Detectable Signal 3.20 Types of DR 3.20.1 Amplitude DR 3.20.2 Frequency DR 3.20.3 Single-Tone Frequency DR 3.20.4 Two-Tone Frequency DR 3.21 Second- and Third-Order Intermodulation Products 3.22 Calculating Two-Tone Frequency DR 3.23 System DR 3.24 Tangential Sensitivity 3.25 Digital Signal Processor 3.26 Summary Reference Problems 4 AGC Design and PLL Comparison 4.1 AGC Design 4.2 AGC Amplifier Curve 4.3 Linearizers 4.4 Detector 4.5 Loop Filter 4.6 Threshold Level 4.7 Integrator 4.8 Control Theory Analysis 4.8.1 AGC Design Example 4.9 Modulation Frequency Distortion 4.10 Comparison of the PLL and AGC Using Feedback Analysis Techniques 4.11 Basic PLL 4.12 Control System Analysis 4.13 Detector 4.14 Loop Filter 4.15 Loop Gain Constant 4.16 Integrator 4.17 Conversion Gain Constant 4.18 Control Theory Analysis 4.19 Similarities between the AGC and the PLL 4.20 Feedback Systems, Oscillations, and Stability 4.21 Summary References Problems 5 Demodulation 5.1 Carrier Recovery for Suppressed Carrier Removal 5.1.1 Squaring Loop 5.1.2 Costas Loop 5.1.3 Modified Costas Loop and Automatic Frequency Control Addition 5.2 Demodulation Process to Remove Spread Spectrum Code 5.2.1 Sliding Correlator 5.2.2 Pulsed Matched Filter 5.3 Pulse Position Modulation 5.4 Code Division Encoding and Decoding 5.5 Coherent versus Differential Digital Modulation and Demodulation 5.5.1 Coherent Demodulation 5.6 Symbol Synchronizer 5.7 The Eye Pattern 5.8 Digital Processor 5.9 Intersymbol Interference 5.10 Scrambler/Descrambler 5.11 Phase-Shift Detection 5.12 Shannon’s Limit 5.13 Summary References Problems 6 Basic Probability and Pulse Theory 6.1 Basic Probability Concepts 6.2 The Gaussian Process 6.3 Quantization and Sampling Errors 6.4 Probability of Error 6.5 Probability of Detection and False Alarms 6.6 Pulsed System Probabilities Using the BDF 6.7 Error Detection and Correction 6.7.1 Error Detection 6.7.2 Error Detection Using Parity 6.7.3 Error Detection Using Checksum 6.7.4 Error Detection Using CRC 6.7.5 Error Correction 6.7.6 Error Correction Using Redundancy 6.7.7 Forward Error Correction 6.7.8 Interleaving 6.7.9 Types of FEC 6.7.10 Viterbi Decoder 6.7.11 Turbo and Low-Density Parity Check Codes 6.8 Theory of Pulse Systems 6.9 PN Code 6.10 Summary References Problems 7 Multipath 7.1 Basic Types of Multipath 7.2 Specular Reflection on a Smooth Surface 7.3 Specular Reflection on a Rough Surface 7.4 Diffuse Reflection 7.5 Curvature of the Earth 7.6 Pulse Systems (Radar) 7.7 Vector Analysis Approach 7.8 Power Summation Approach 7.9 Multipath Mitigation Techniques 7.9.1 Antenna Diversity 7.10 Summary References Problems 8 Improving the System against Jammers 8.1 Burst Jammer 8.2 Adaptive Filter 8.3 Digital Filter Intuitive Analysis 8.4 Basic Adaptive Filter 8.5 Least Mean Square Algorithm 8.6 Digital/Analog ALE 8.7 Wideband ALE Jammer Suppressor Filter 8.8 Digital Circuitry 8.9 Simulation 8.10 Results 8.11 Amplitude and Phase Suppression Results 8.12 Gram-Schmidt Orthogonalizer 8.13 Basic GSO 8.14 Adaptive GSO Implementation 8.15 Intercept Receiver Comparison 8.16 Summary References Problems 9 Cognitive Systems 9.1 The Environment 9.1.1 Jammers 9.1.2 Channel Degradation 9.2 Basic Cognitive Techniques 9.2.1 Dynamic Spectrum Access 9.2.2 Adaptive Power/Gain Control 9.2.3 Cognitive Techniques Using Modulation Waveforms 9.2.4 Spread Spectrum for Increased Process Gain against Jammers 9.2.5 Adaptive Error Correction 9.2.6 Adaptive Filter for Jammer Mitigation 9.2.7 Dynamic Antenna Techniques Using AESAs 9.2.8 Multipath Communications 9.2.9 Multiple Antennas 9.2.10 Network Configurations 9.2.11 Cognitive MANETs 9.3 Cognitive System Solution 9.4 Summary References Problems 10 Broadband Communications and Networking 10.1 Mobile Users 10.1.1 Personal Communications Services 10.1.2 Cellular Telephone 10.1.3 Industrial, Scientific, and Medical Bands 10.2 Types of Distribution Methods for the Home 10.2.1 Power Line Communications 10.2.2 Home Phoneline Networking Alliance 10.2.3 Radio Frequency Communications 10.2.4 IEEE 802.11 10.2.5 Bluetooth 10.2.6 WiMAX 10.2.7 LTE 10.3 LMDS 10.4 MMDS 10.5 Universal Mobile Telecommunications System 10.6 4G 10.7 Mobile Broadband Wireless Access IEEE 802.20 10.8 MISO Communications 10.9 MIMO Communications 10.10 QoS 10.11 Military Radios and Data Links 10.11.1 The Joint Tactical Radio System 10.11.2 SDRs 10.11.3 Software Communications Architecture 10.11.4 JTRS Radios (Clusters) 10.11.5 Waveforms 10.11.6 JTRS Network Challenge 10.11.7 Gateway and Network Configurations 10.11.8 Link 16 10.11.9 Link 16 Modulation 10.11.10 TDMA 10.11.11 ‘‘Stacked’’ Nets 10.11.12 Time Slot Reallocation 10.11.13 Bit/Message Structure 10.12 Summary References Problems 11 Satellite Communications 11.1 Communications Satellites 11.2 General Satellite Operation 11.2.1 Operational Frequencies 11.2.2 Modulation 11.2.3 Adaptive Differential Pulse Code Modulation 11.3 Fixed Satellite Service 11.4 Geosynchronous and Geostationary Orbits 11.5 Ground Station Antennas 11.6 Noise and the Low-Noise Amplifier 11.7 The Link Budget 11.7.1 EIRP 11.7.2 Propagation Losses 11.7.3 Received Power at the Receiver 11.7.4 Carrier Power/Equivalent Temperature 11.8 Multiple Channels in the Same Frequency Band 11.9 Multiple Access Schemes 11.10 Propagation Delay 11.11 Cost for Use of the Satellites 11.12 Regulations 11.13 Types of Satellites Used for Communications 11.14 System Design for Satellite Communications 11.15 Summary References Problems 12 Global Navigation Satellite Systems 12.1 Satellite Transmissions 12.2 Data Signal Structure 12.3 GPS Receiver 12.3.1 GPS Process Gain 12.3.2 Positioning Calculations 12.4 Atmospheric Errors 12.5 Multipath Errors 12.6 Narrow Correlator 12.7 Selective Availability 12.8 Carrier Smoothed Code 12.9 Differential GPS 12.10 DGPS Time Synchronization 12.11 Relative GPS 12.12 Doppler 12.13 Kinematic Carrier Phase Tracking 12.14 Double Difference 12.15 Wide Lane/Narrow Lane 12.16 Other Satellite Positioning Systems 12.17 Summary References Problems 13 Direction Finding and Interferometer Analysis 13.1 Interferometer Analysis 13.2 Direction Cosines 13.3 Basic Interferometer Equation 13.4 Three-Dimensional Approach 13.5 Antenna Position Matrix 13.6 Coordinate Conversion Due to Pitch and Roll 13.7 Using Direction Cosines 13.8 Alternate Method 13.9 Quaternions 13.10 Summary References Problems