دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ruimin Li (editor). Zhengbing He (editor)
سری: Transportation
ISBN (شابک) : 1839530251, 9781839530258
ناشر: Institution of Engineering and Technology
سال نشر: 2021
تعداد صفحات: 328
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 مگابایت
در صورت تبدیل فایل کتاب Traffic Information and Control به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اطلاعات و کنترل ترافیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents About the editors 1 Introduction 1.1 Motivation 1.2 Purpose 1.3 Scope 1.4 Book structure Part I: Modern traffic information technology 2 Traffic analytics with online web data 2.1 Introduction 2.2 Literature review 2.3 Methodology 2.3.1 System overview 2.3.1.1 Data collection 2.3.1.2 Data preprocessing 2.3.1.3 Modeling and mining 2.3.1.4 Applications 2.3.2 Main algorithms and models 2.3.2.1 Latent Dirichlet allocation 2.3.2.2 Word embedding 2.3.2.3 Bayesian network 2.3.2.4 Deep learning 2.4 Some results 2.4.1 Traffic sentiment analysis and monitoring system 2.4.2 Traffic event detection 2.4.3 Traffic status prediction 2.4.4 Semantic reasoning for traffic congestion 2.5 Conclusion References 3 Macroscopic traffic performance indicators based on floating car data: formation, pattern analysis, and deduction 3.1 Introduction 3.2 A macroscopic traffic performance indicator: network-level trip speed 3.2.1 The mathematical form of the NLT speed 3.2.2 The empirical data for analyses 3.2.3 Descriptive analyses of influential factors 3.2.4 Correlative relationships between variables 3.3 Methods of time series analysis 3.3.1 The concept and basic features of the time series 3.3.2 The exponential smoothing method 3.3.3 The ARIMA method 3.3.4 The support vector machine (SVM) method 3.4 Analyses of the NLT speed time series 3.4.1 Evaluation criteria of the modeling performance 3.4.2 The decomposition of the NLT speed time series 3.4.3 The analysis based on exponential smoothing methods 3.4.4 The analysis based on ARIMA models 3.4.5 The analysis based on a hybrid ARIMA–SVM Model 3.5 Conclusions References 4 Short-term travel-time prediction by deep learning: a comparison of different LSTM-DNN models 4.1 Introduction 4.2 Traffic time series estimation with deep learning 4.2.1 Recurrent neural network 4.2.2 Convolutional neural networks 4.2.3 Generative adversarial networks 4.3 The LSTM-DNN models 4.4 Experiments 4.4.1 Datasets 4.4.2 Evaluation metrics 4.4.3 Hyperparameter settings for LSTM-DNN models 4.4.4 Comparison between LSTM-DNN models and benchmarks 4.5 Conclusion and future work References 5 Short-term traffic prediction under disruptions using deep learning 5.1 Introduction 5.2 Literature review 5.2.1 Traffic prediction under normal conditions 5.2.2 Traffic prediction under disrupted conditions 5.2.2.1 Traffic characteristics under disrupted conditions 5.2.2.2 Traffic prediction under disrupted conditions 5.2.2.3 Summary 5.2.3 Review of traffic prediction using deep learning techniques 5.2.3.1 Introduction 5.2.3.2 Data representation in traffic prediction using deep learning 5.2.3.3 Spatio-temporal features in traffic prediction using deep learning 5.2.4 Summary 5.3 Methodology 5.3.1 Traffic network representation on a graph 5.3.2 Problem formulation 5.3.3 Model structure 5.3.3.1 Temporal dependencies 5.3.3.2 Spatial dependencies 5.3.3.3 Attention mechanism 5.3.3.4 Loss function and parameter optimisation 5.3.4 Quantification of prediction accuracy 5.4 Short-term traffic data prediction using real-world data in London 5.4.1 Traffic speed data 5.4.2 Preparation for the prediction model 5.4.2.1 Traffic speed data preprocessing 5.4.2.2 Graph representation 5.4.2.3 Baseline methods for comparison 5.4.3 Short-term traffic speed prediction under non-incident conditions 5.4.3.1 Model setups 5.4.3.2 Prediction results under non-incident conditions 5.4.4 Short-term traffic data prediction under incidents 5.4.4.1 Traffic incident data 5.4.4.2 Prediction results during disruptions 5.5 Conclusions and future research References 6 Real-time demand-based traffic diversion 6.1 Model of path choice behavior of driver under guidance information 6.1.1 Discrete probability selection model 6.1.2 Prospect theory model 6.1.3 Fuzzy logic model 6.1.4 Other models 6.2 Optimization of traffic diversion strategy 6.2.1 Responsive strategy 6.2.2 Iterative strategy 6.3 Research on dynamic O–D estimation 6.3.1 Intersection model 6.3.2 Expressway model 6.3.3 Network model 6.4 Dynamic traffic diversion model based on dynamic traffic demand estimation and prediction 6.4.1 DODE model of urban expressway 6.4.1.1 The module of METANET model 6.4.1.2 The module of DODE model 6.4.2 Traffic diversion model of urban expressway 6.4.2.1 Simulation of driver’s diversion behavior 6.4.2.2 Influence of diversion on the traffic flow of exit ramp 6.4.2.3 Evaluation index of road network performance 6.4.3 Dynamic traffic diversion model based on DODE 6.4.4 Model solution 6.4.5 Case study 6.4.5.1 Experimental design 6.4.5.2 Experimental analysis and results of traffic diversion 6.4.5.3 Experimental analysis and results of DODE 6.5 Conclusion References 7 Game theoretic lane change strategy for cooperative vehicles under perfect information 7.1 Introduction 7.2 Problem formulation 7.3 Highway traffic system dynamics 7.3.1 Longitudinal dynamics 7.3.2 Lateral dynamics 7.3.3 Lane change and dynamic communication topology 7.3.4 Closed-loop dynamics 7.4 Game theoretic formulation of the lane change decision problem 7.4.1 Dynamic lane change game formulation 7.4.2 Existence of equilibrium 7.4.3 Properties of the lane change dynamic game 7.5 Numerical examples 7.5.1 Experimental setting 7.5.2 Scenario 1: delayed merge 7.5.3 Scenario 2: courtesy lane change 7.6 Conclusion References 8 Cooperative driving and a lane change-free road transportation system 8.1 Introduction 8.2 Cooperative driving strategies at intersections 8.2.1 Safety driving pattern-based strategy 8.2.2 Reservation-based strategy 8.2.3 Trajectory optimization-based strategy 8.3 Cooperative driving strategies at on-ramps 8.3.1 Virtual vehicle mapping strategy 8.3.2 Slot-based strategy 8.4 Lane change-free road transportation system 8.4.1 Lane change-free road transportation system: an illustration 8.4.2 System design 8.4.2.1 Overall approaching process 8.4.2.2 Conflict avoidance-based cooperative driving strategy 8.4.3 Simulation test 8.5 Conclusion and future direction Acknowledgements References Part II: Modern traffic signal control 9 Urban traffic control systems: architecture, methods and development 9.1 Introduction 9.1.1 Brief description 9.1.1.1 Europe 9.1.1.2 The United States 9.1.1.3 Australia 9.1.2 Classification 9.1.3 Level of traffic control system 9.2 SCOOT 9.2.1 Overview 9.2.2 Basic principles 9.2.3 System architecture 9.2.4 Optimization process 9.2.4.1 Demand detection 9.2.4.2 Queue prediction 9.2.4.3 Congestion prediction 9.2.4.4 Performance prediction 9.2.4.5 Signal optimization 9.2.5 Additional features 9.2.5.1 Gating 9.2.5.2 Bus priority 9.3 SCATS 9.3.1 Overview 9.3.2 Basic principles 9.3.3 System architecture 9.3.4 Optimization process 9.3.4.1 Demand detection 9.3.4.2 Cycle determination 9.3.4.3 Split determination 9.3.4.4 Offset determination 9.4 Summaries and limitation analysis 9.5 Future analysis of urban traffic control system 9.5.1 Changes in system environments 9.5.1.1 Traffic data 9.5.1.2 Traffic control objects and variables 9.5.1.3 The demand of computational power 9.5.2 Standardization 9.5.3 Summary References 10 Algorithms and models for signal coordination 10.1 Introduction 10.2 Basic MAXBAND approach 10.3 Extended MAXBAND approach 10.3.1 Variable bandwidth method 10.3.2 Multimode band method 10.3.3 Path-based method 10.4 MAXBAND for network system 10.5 Discussion and open issues 10.6 Conclusion References 11 Emerging technologies to enhance traffic signal coordination practices 11.1 Coordination timing development and optimization 11.1.1 Developing cycle length and splits using controller event data 11.1.2 Optimizing offsets and phasing sequences based on travel-run trajectories 11.2 Field implementation and timing diagnosis 11.3 Performance measures for assessing the quality of signal coordination 11.4 Signal timing documentation 11.5 Summary References 12 Traffic signal control for short-distance intersections with dynamic reversible lanes 12.1 Introduction 12.2 Application of dynamic reversible lane 12.3 Model of signal timing 12.3.1 Signal phase and sequence 12.3.2 Signal timing model 12.4 Calibration and validation 12.4.1 Simulation scenarios 12.4.2 Validation of the proposed plan 12.5 Adaptability analysis 12.5.1 Road conditions 12.5.2 Left-turning traffic proportion 12.6 Conclusion References 13 Multiday evaluation of adaptive traffic signal system based on license plate recognition detector data 13.1 Introduction 13.2 Methodology 13.2.1 Travel time delay 13.2.2 Travel time-based measurements 13.2.2.1 Scatter diagram of travel time (delay) 13.2.2.2 Cumulative frequency diagram of travel time 13.2.3 PCD and related indexes 13.2.4 Travel time reliability indexes 13.2.4.1 The 95th percentile travel time 13.2.4.2 Buffer index 13.3 Case description and dataset 13.3.1 Case description 13.3.2 Dataset 13.4 Results 13.4.1 Evaluation of travel time delay 13.4.1.1 Scatter diagram analysis of travel time delay 13.4.1.2 Quantitative analysis of travel time delay improvement 13.4.2 Cumulative frequency diagram of travel time 13.5 Evaluation of the PCD 13.5.1 Travel time reliability evaluation 13.5.1.1 The 95th percentile travel time 13.5.1.2 Buffer index 13.6 Conclusion Acknowledgments References 14 Conclusion Index Back Cover