دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Magnus Jahre, Diana Göhringer, Philippe Millet سری: ISBN (شابک) : 3030535312, 9783030535315 ناشر: Springer سال نشر: 2020 تعداد صفحات: 266 [264] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Towards Ubiquitous Low-power Image Processing Platforms به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب به سوی پلتفرم های همه جا حاضر برای پردازش تصویر کم مصرف نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب نتایج علمی کلیدی پروژه تحقیقاتی Horizon 2020 TULIPP: Towards alliquitous low-power processing platforms را خلاصه می کند. تمرکز اصلی بر توسعه سیستمهای تعبیهشده با کارایی بالا و کارآمد برای گستره رو به رشد برنامههای پیچیده پردازش تصویر است. رویکرد کل نگر TULIPP در این کتاب توضیح داده شده است که به پلتفرم های سخت افزاری، ابزارهای برنامه نویسی و سیستم عامل های تعبیه شده می پردازد. تعدادی از نتایج به عنوان سخت افزار/نرم افزار منبع باز برای جامعه در دسترس هستند. نتایج با چندین مورد استفاده برگرفته از کاربردهای دنیای واقعی در حوزههای کلیدی مانند وسایل نقلیه هوایی بدون سرنشین (UAV)، روباتیک، فضا و پزشکی ارزیابی میشوند.
This book summarizes the key scientific outcomes of the Horizon 2020 research project TULIPP: Towards Ubiquitous Low-power Image Processing Platforms. The main focus lies on the development of high-performance, energy-efficient embedded systems for the growing range of increasingly complex image processing applications. The holistic TULIPP approach is described in the book, which addresses hardware platforms, programming tools and embedded operating systems. Several of the results are available as open-source hardware/software for the community. The results are evaluated with several use cases taken from real-world applications in key domains such as Unmanned Aerial Vehicles (UAVs), robotics, space and medicine.
Preface Contents Contributors Part I The Tulipp Reference Platform 1 Challenges in the Realm of Embedded Real-Time ImageProcessing 1.1 Introduction 1.2 Image Processing Challenges in the Medical Domain 1.3 Image Processing Challenges in the UAV Domain 1.4 Image Processing Challenges in the Automotive Domain 1.5 Looking into the Future: Neural Networks 1.6 Conclusion References 2 TRP: A Foundational Platform for High-Performance Low-Power Embedded Image Processing 2.1 Introduction 2.2 The Constraints of Embedded Image Processing 2.3 Foundational Platforms 2.4 The Tulipp Reference Platform and Its Instances 2.4.1 The Tulipp Reference Platform (TRP) 2.4.2 The Tulipp Reference Platform (TRP) Instances 2.4.2.1 The Medical Instance 2.4.2.2 The Space Instance 2.4.2.3 The Automotive Instance 2.4.2.4 The UAV Instance 2.4.2.5 The Robotics Instance 2.5 The Guidelines Concept 2.5.1 Guideline Definition 2.5.2 Guideline Generation Methodology 2.5.3 Guideline Quality Assurance 2.6 Conclusion References Part II The Tulipp Starter Kit 3 The Tulipp Hardware Platform 3.1 Introduction 3.2 Core Processor 3.2.1 FPGA Concept 3.2.2 SoCs: Zynq Architecture 3.2.3 Xilinx Zynq Ultrascale+ 3.3 Modular Carrier: EMC2-DP 3.3.1 SoM 3.3.2 Power 3.3.3 Configuration and Booting 3.3.4 External Interfaces 3.4 FMC Card: FM191-RU 3.4.1 Power 3.4.2 External Interfaces 3.5 Mechanical Aspects 3.5.1 Physical Characteristics 3.5.2 Fastening 3.5.3 Enclosure 3.6 Conclusion References 4 Operating Systems for Reconfigurable Computing: Concepts and Survey 4.1 Introduction 4.2 Operating System Concepts for Reconfigurable Systems 4.2.1 Definitions 4.2.2 RCOS Services 4.2.3 Abstraction 4.2.4 Virtualisation 4.3 Operating System Implementations for Reconfigurable Architectures 4.3.1 RC-Functionality in OS Kernel 4.3.2 Operating System Extensions for RC-Functionality 4.3.3 Closed Source RCOSes 4.3.4 Hardware Acceleration of OS Modules 4.3.5 RC-Frameworks 4.4 Challenges and Trends 4.5 Conclusion References 5 STHEM: Productive Implementation of High-Performance Embedded Image Processing Applications 5.1 Introduction 5.2 The Generic Development Process (GDP) 5.3 Realising the Generic Development Process 5.3.1 Selecting the Implementation Approach 5.3.1.1 Single-Language Approaches 5.3.1.2 Multi-Language Approaches 5.3.2 Selecting and Evaluating Performance Analysis Tools 5.4 STHEM: The Tulipp Tool-Chain 5.5 Conclusion References 6 Lynsyn and LynsynLite: The STHEM Power MeasurementUnits 6.1 Introduction 6.2 Asynchronous Power Measurement Techniques 6.2.1 Intrusive Periodic Sampling 6.2.2 Non-intrusive Periodic Sampling 6.3 The Lynsyn and LynsynLite PMUs 6.3.1 Lynsyn 6.3.2 LynsynLite 6.4 Experimental Setup 6.5 Hardware Characterisation 6.5.1 Sampling Frequency 6.5.2 Power Sensor 6.5.2.1 Precision 6.5.2.2 Accuracy 6.6 System-Level Characterisation 6.6.1 Performance Interference 6.6.2 Power and Energy Interference 6.6.3 Source Code Correlation 6.7 Case Study 6.8 Related Work 6.9 Conclusion References 7 Accelerated High-Level Synthesis Feature Detection for FPGAs Using HiFlipVX 7.1 Introduction 7.2 Related Work 7.3 Implementation 7.3.1 Overview 7.3.2 Image Processing Functions 7.3.3 FAST Corner Detector 7.3.4 Canny Edge Detector 7.3.5 OFB Feature Detector 7.4 Evaluation 7.4.1 System Setup and Tool Investigation 7.4.2 Implementation and Synthesis Results 7.4.3 Latency Results 7.5 Conclusion References Part III The Tulipp Starter Kit at Work 8 UAV Use Case: Real-Time Obstacle Avoidance System for Unmanned Aerial Vehicles Based on Stereo Vision 8.1 Introduction 8.2 Implementing the Stereo Image Processing System 8.3 Obstacle Detection and Collision Avoidance 8.4 Evaluation 8.5 Insights 8.6 Conclusion References 9 Robotics Use Case Scenarios 9.1 Introduction 9.2 VineScout 9.3 SEMFIRE 9.3.1 Use Case Description 9.3.2 Human Intervention 9.3.3 Challenges 9.3.4 Functional and Technical Specification 9.3.5 Artificial Perception Base System 9.3.6 Computational Deployment on the Ranger Using the Tulipp Platform 9.4 Conclusions and Future Work References 10 Reducing the Radiation Dose by a Factor of 4 Thanksto Real-Time Processing on the Tulipp Platform 10.1 Introduction to the Medical Use Case 10.2 Medical X-Ray Video: The Need for Embedded Computation 10.3 X-ray Noise Reduction Implementation 10.3.1 Algorithm Insights 10.3.1.1 Clean Image 10.3.1.2 Pre-filtering 10.3.1.3 Multiscale Edge and Contrast Filtering 10.3.1.4 Post-Filtering 10.3.2 Implementation and Optimisation Methodology 10.3.3 Function Fusion to Increase Locality 10.3.4 Memory Optimisation 10.3.5 Code Linearisation 10.3.6 Kernel Decomposition 10.3.7 FPGA Implementation of the Filters 10.4 Performance Optimisation Results 10.4.1 Initial Profiling 10.4.2 Gaussian Blur Optimisation 10.4.3 Final Results 10.4.4 Wrap Up 10.5 Conclusion References 11 Using the Tulipp Platform to Diagnose Cancer 11.1 Introduction 11.2 Application 11.3 Conclusion References 12 Space Use-Case: Onboard Satellite Image Classification 12.1 Introduction 12.2 Convolutional Neural Networks for Image Processing 12.2.1 Multilayer Perceptrons 12.2.2 Convolutional Topology 12.3 Spiking Neural Networks for Embedded Applications 12.3.1 Integrate and Fire Neuron Model 12.3.2 Exporting Weights from FNN to SNN: Neural Network Conversion 12.4 Algorithmic Solution 12.4.1 An Hybrid Neural Network for Space Applications 12.4.2 The Hybrid Neural Network Algorithm 12.5 Hardware Solution 12.5.1 Why Target the Tulipp Platform ? 12.5.2 Our Hardware HNN Architecture 12.5.2.1 Xilinx® DPU IP 12.5.2.2 Formal to Spiking Domain Interface 12.5.2.3 SNN Accelerator 12.5.3 Architecture Configuration Flow 12.6 Results 12.6.1 Resource Utilisation 12.6.2 Power Consumption 12.6.3 Performance 12.7 Discussion 12.8 Conclusion References Part IV The Tulipp Ecosystem 13 The Tulipp Ecosystem 13.1 Introduction 13.2 The Ecosystem 13.3 Conclusion Appendix: Selected Ecosystem Endorsements References 14 Tulipp and ClickCV: How the Future Demands of Computer Vision Can Be Met Using FPGAs 14.1 Introduction 14.2 Trends in Computer Vision for Embedded Systems 14.2.1 Deep Learning for Image Recognition 14.2.2 Deep Learning for Other Applications 14.2.3 Feature-Based and Optical Flow-Based vSLAM 14.2.4 Image Stabilization 14.2.5 Putting It All Together 14.3 The Potential of FPGAs in Computer Vision 14.3.1 The Early Impact of GPUs on Neural Networks 14.3.2 The Advantages of Neural Networks on FPGAs 14.3.3 The Advantages of FPGAs for Computer Vision Systems 14.4 FPGA Embedded Computer Vision Toolsets 14.4.1 Bringing C/C++ to FPGAs 14.4.2 ClickCV: High Performance, Low Latency, Accessible Computer Vision for FPGAs 14.4.3 FPGA Tools for Data Scientists 14.5 Conclusion References Index