دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Santiago López de Medrano
سری: Grundlehren der mathematischen Wissenschaften 361
ISBN (شابک) : 9783031283635, 9783031283642
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 282
[277]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Topology and Geometry of Intersections of Ellipsoids in R^n به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توپولوژی و هندسه تقاطع های بیضی در R^n نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مروری بر تحقیقات در زمینه توپولوژی و هندسه تقاطعهای چهارگانه در $\\\\mathbb{R}^n$، با تمرکز بر تقاطعهای بیضیهای متحدالمرکز و فضاهای مرتبط میدهد. یکپارچه سازی و سازماندهی مطالبی که قبلاً در بسیاری از مقالات پخش شده بود، همچنین حاوی نتایج جدیدی است. بخش اول مبانی بسیار مفصلی از یک نظریه گسترده ارائه می دهد که می تواند برای پیشرفت های آینده مفید باشد. این شامل فصل هایی در مورد تقاطع های کلی چهارگانه، عملیات روی آنها، و تقاطع چهارگانه های متحدالمرکز و کواکسیال است. با حرکت از عمومی به خاص، بخش دوم بر توصیف توپولوژیکی از تقاطع های عرضی بیضی های متحدالمرکز، از جمله شرح کامل مورد سه بیضی، و برخی از خانواده های بزرگ بیش از سه مورد از آنها تمرکز می کند. بخش سوم به روابط با سایر حوزه های ریاضیات مانند سیستم های دینامیکی، هندسه پیچیده، هندسه تماسی و سمپلتیک و سایر کاربردها می پردازد. ضمیمه برخی از موارد فنی را جمع آوری می کند و همچنین شرحی از ریشه ها، انگیزه ها و پیشرفت موضوع، از جمله خاطرات تاریخی نویسنده، که در توسعه آن نقش اساسی داشته است، ارائه می دهد.
This book gives an overview of research in the topology and geometry of intersections of quadrics in $\\mathbb{R}^n$, with a focus on intersections of concentric ellipsoids and related spaces. Unifying and organizing material previously spread over many articles, it also contains new results. The first part provides very detailed foundations of a wide-ranging theory that could be useful for future developments. It includes chapters on general intersections of quadrics, operations on them, and intersections of concentric and coaxial quadrics. Moving from the general to the specific, the second part focuses on a topological description of transverse intersections of concentric ellipsoids, including a complete description of the case of three ellipsoids, and of some large families of more than three of them. The third part looks at relations to other areas of mathematics such as dynamical systems, complex geometry, contact and symplectic geometry, and other applications. An appendix gathers some technical items and also gives an account of the origins, motivations and progression of the subject, including historical recollections of the author, who has been central to its development.
Preface Contents Chapter 1 Introduction 1.1 Ellipsoids and Hyperboloids 1.2 Intersections of Two Concentric Ellipsoids 1.3 Intersections of Two Concentric Hyperboloids 1.4 Plan of the Book Part I General Results Chapter 2 General Intersections of Quadrics 2.1 Characterization of General Transverse Compact Intersections of Quadrics 2.2 Characterization of General Transverse Intersections of Ellipsoids 2.3 Quadratic Mappings 2.4 Types of Intersections, Their Symmetries and Operations 2.4.1 Intersections of concentric quadrics 2.4.2 Intersections of concentric ellipsoids 2.4.3 Universality of open half intersections of concentric ellipsoids 2.4.4 Intersections of partially coaxial quadrics 2.4.5 Intersections of coaxial quadrics 2.4.6 Intersections of coaxial ellipsoids 2.4.7 Moment-angle manifolds Chapter 3 General Operations on Intersections of Quadrics 3.1 The Book Construction 3.2 Adding Squares and Operation Ỹ 3.2.1 Adding a real square 3.2.2 Adding a complex square 3.2.3 Operation Ỹ Chapter 4 Intersections of Coaxial Quadrics 4.1 Symmetry and the Polyhedral Set 4.2 General Properties 4.2.1 Non-emptiness 4.2.2 Compactness 4.2.3 Transversality 4.2.4 Transversality at infinity 4.2.5 Transversality up to infinity 4.2.6 Connectedness 4.2.7 Simple connectedness 4.2.8 Higher connectedness 4.3 Polyhedral Sets and Polytopes. Realization and Operations 4.3.1 Realization 4.4 Truncation 4.4.1 Truncating faces 4.4.2 Truncating vertices 4.4.3 Truncating simplicial faces 4.4.4 Doubles, open books and connected sums 4.4.5 Combining truncations with the book construction Chapter 5 Intersections of Coaxial Ellipsoids 5.1 General Properties of Intersections of Coaxial Ellipsoids 5.1.1 Non-emptiness 5.1.2 Transversality 5.1.3 Connectedness 5.1.4 Higher connectedness 5.1.5 General properties of moment-angle manifolds 5.2 Primitive Configurations and Multiplicities 5.2.1 Some small configurations 5.3 Truncation of Transverse Intersections of Coaxial Ellipsoids 5.3.1 Some simple vertex truncations 5.3.2 Truncating faces of a product of simplices 5.3.3 A deeper cut 5.4 The Dual Polytope 5.5 Singular Intersections 5.5.1 Cones and their smoothings 5.5.2 Some singular intersections 5.5.3 The link of an isolated singularity 5.5.4 Codimension one singularities 5.5.5 Smoothings and wall-crossing 5.6 The Homology Splitting 5.7 Examples of Homology Computations 5.7.1 Examples of homology computations of singular intersections 5.8 Dualities 5.9 The Sphere and Singularity Theorems Conclusion Part II Topological Description of Transverse Intersections of Concentric Ellipsoids Chapter 6 Characterization of Connected Sums Chapter 7 Three Coaxial Ellipsoids Three Coaxial Ellipsoids 7.1 Main Theorem 7.1 7.2 The Homology for Three Coaxial Ellipsoids 7.3 Proof of the Main Theorem 7.1 7.4 Parallelizability and Euler Characteristic 7.5 Halves 7.5.1 The space 7.5.2 The topology of Z+ 7.6 Transverse Intersections of Two Coaxial Hyperboloids Chapter 8 Three Concentric Ellipsoids Three Concentric Ellipsoids 8.1 The Normal Form 8.1.1 Normal form of two complex homogeneous quadrics 8.1.2 Linear normal form of two homogeneous real quadrics 8.1.3 Topological normal form of three transverse concentric ellipsoids 8.2 The Main Theorem 8.5 8.3 Preservation of Connected Sums 8.4 Homology 8.4.1 Preservation of the total homology 8.4.2 Computation of the homology 8.5 Proof of the Main Theorem 8.5 Chapter 9 More Than Three Coaxial Ellipsoids 9.1 Dual-Neighborly Polytopes 9.2 The Topology of the Associated Intersection of Coaxial Ellipsoids 9.2.1 The Euler characteristic ????(????(????)) for dual-neighborly polytopes ???? of even dimension 9.2.2 The result of other operations 9.2.3 On the sequences of genera Chapter 10 A Family of Surfaces That Are Intersections of Concentric, Non-Coaxial Ellipsoids 10.1 Actions of 2-Groups on Surfaces with Quotient a Polygon 10.2 The Construction 10.3 Proof of Theorem 10.1 of the Previous Section Part III Relations With Other Areas of Mathematics Chapter 11 Dynamical Systems 11.1 Real Linear Dynamical Systems 11.2 Linear Complex Dynamical Systems 11.3 Generalized Hopf bifurcations 11.4 Generalized May–Leonard Systems Chapter 12 Complex Geometry 12.1 The Main Classical Examples 12.2 Deformations of the Main Classical Examples 12.3 The LVM-manifolds 12.4 Deformations 12.5 Examples Chapter 13 Contact and Symplectic Geometry 13.1 All Odd-Dimensional Moment-Angle Manifolds Admit Contact Structures 13.2 Large Families of Odd-Dimensional Coaxial Intersections of Ellipsoids Admit Contact Structures 13.3 A Family of Odd-Dimensional Concentric Intersections of Ellipsoids That Admit Contact Structures 13.4 Intersections of Ellipsoids as Lagrangian Submanifolds Chapter 14 Intersections with Dihedral Symmetry 14.1 Jacobi Formula for the Co-Rank 14.2 Minors of the Vandermonde ???????? on the ????-th Roots of Unity 14.2.1 First results 14.2.2 The complementarity theorem 14.2.3 The case ???? = ???? prime. Chebotaryov’s Theorem 14.2.4 Some cases where ???? is a prime power, ???? = ???????? , ???? odd 14.2.5 The Murty–Whang criterion 14.3 Some Complex Varieties With Cyclic and Dihedral Symmetry 14.3.1 Some complex varieties with cyclic symmetry 14.3.2 Some complex varieties with dihedral symmetry 14.4 Intersections of Real Varieties With Dihedral Symmetry Chapter 15 Polyhedral Products Part IV Appendices Appendix A Proof of Theorem 2.1 Appendix B Origins B.1 From Singularity Theory... B.2 Dynamical Systems B.3 ...to the Polyhedral Product Functor B.3.1 Coxeter groups, small covers and toric manifolds B.3.2 The polyhedral product functor Final remarks Appendix C Complements of Products of Spheres in Spheres Appendix D Diagonalizability of Matrices D.1 Generalities D.2 When the Field is R or C D.3 Simultaneous Diagonalizability and Commutation D.4 An Algorithm for Simultaneous Diagonalizability D.5 Some Algebraic Mappings Between Spaces of Matrices References Index