دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Anatoly M. Vershik (editor), Victor M. Buchstaber (editor), Andrey V. Malyutin (editor) سری: Contemporary Mathematics, 772 ISBN (شابک) : 1470456648, 9781470456641 ناشر: American Mathematical Society سال نشر: 2021 تعداد صفحات: 360 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب Topology, Geometry, and Dynamics: V. A. Rokhlin-Memorial به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توپولوژی، هندسه و دینامیک: V. A. Rokhlin-Memorial نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از کنفرانسی در اوت 2019 در سن پترزبورگ، روسیه، 20 مقاله در مورد جنبههای ریاضیات مورد علاقه ریاضیدان روسی روخلین (1919-1984) بحث میکنند. عناوین شامل سازگاری گروپوئیدها و عدم تغییر مجانبی قدرت های کانولوشن، همگرایی معیارهای تعادلی مربوط به زیرگروه های متناهی از نمودارهای بی نهایت است: مثال های جدید، چند جمله ای های پوانکاره بسته های عمومی مدار چنبره در گونه های شوبرت، توصیفی از گروه هندسی همومتری هومچیلد. جبرها، و منحنی های مثلثاتی واقعی سطوح هیرزبرخ با حداکثر انحراف. حاشیه نویسی ©2021 Ringgold, Inc., Portland, OR (protoview.com)
From an August 2019 conference in St. Petersburg, Russia, 20 papers discuss aspects of mathematics of particular interest to Russian mathematician Rokhlin (1919-84). The topics include the amenability of groupoids and asymptotic invariance of convolution powers, the convergence of equilibrium measures corresponding to finite subgroups of infinite graphs: new examples, Poincaré polynomials of generic torus orbit closures in Schubert varieties, a geometric description of the Hochschild cohomology of group algebras, and maximally inflected real trigonal curves of Hirzebruch surfaces. Annotation ©2021 Ringgold, Inc., Portland, OR (protoview.com)
Cover Title page Contents Preface V. A. Rokhlin (23 August 1919–3 December 1984), materials for the biography Bibliography of V. A. Rokhlin About V. A. Rokhlin Teaching mathematics to non-mathematicians Notes by Oleg Viro Vladimir Abramovich Rokhlin and algebraic topology 1. Introduction 2. Bordism groups 3. The signature and its applications 4. The signature of 4-dimensional manifolds 5. Framed bordism, and the Rokhlin and Milnor–Kervaire theorems 6. Thom spaces and Atiyah duality 7. The theories of complex bordism ?_{*}(?) and cobordism ?*(?) 8. The loop space of ?³ and the coefficients of the Chen–Dold character 9. The signature of partially framed manifolds References Amenability of groupoids and asymptotic invariance of convolution powers Introduction 1. Amenable groupoids 2. Markov chains on groupoids and approximate invariance 3. Amenable actions References Slopes of links and signature formulas 1. Introduction 2. The signature formula 3. The slope 4. Slopes via ?-complexes 5. Concordance invariance References ?-rigidity of the property to be an almost Pogorelov polytope Introduction 1. Cohomology ring of a moment-angle manifold of a simple 3-polytope 2. ?-rigidity of Pogorelov polytopes 3. Cohomological rigidity of the property to be an almost Pogorelov polytope 4. Generalization of the technique to almost Pogorelov polytopes 5. Remark Acknowledgments References The first homology of a real cubic is generated by lines 1. Introduction 2. The case of nodal cubics 3. Passing to nonsingular cubics 4. Concluding remarks Acknowledgments References Circular orders, ultra-homogeneous order structures, and their automorphism groups 1. Introduction 2. Some generalizations of (extreme) amenability 3. Circular order, topology, and inverse limits 4. Ultrahomogeneous actions on circularly ordered sets 5. The Fraïssé class of finite circularly ordered systems and the KPT theory 6. Automatic continuity and Roelcke precompactness 7. Some perspectives and questions 8. Appendix: Large ultrahomogeneous circularly ordered sets Acknowledgments References Convergence of equilibrium measures corresponding to finite subgraphs of infinite graphs: New examples 1. Introduction 2. Preliminary information and statement of the problem 3. Linear graphs 4. Existence of an irregular sequence 5. Existence of a regular sequence 6. Concluding remarks References Anti-symplectic involutions on rational symplectic 4-manifolds 1. Introduction 2. Tools 3. Proof outline References Dolbeault cohomology of complex manifolds with torus action 1. Introduction 2. Preliminaries: holomorphic foliations on complex manifolds 3. Fujiki foliations 4. Basic Dolbeault cohomology of the canonical foliations on complex moment-angle manifolds 5. Manifolds with maximal torus actions 6. Dolbeault cohomology of moment-angle manifolds Acknowledgment References Poincaré polynomials of generic torus orbit closures in Schubert varieties 1. Introduction 2. Backgrounds: Polytopes and projective toric varieties 3. Generic torus orbit closures in Schubert varieties and their Poincaré polynomials 4. Proof of Theorem 3.6 5. Concluding remarks Acknowledgment References Higher order Massey products and applications Introduction 1. Massey products in cohomology 2. Massey products and Lie algebras representations 3. ?-step Massey products in Lie algebra cohomology 4. Non-trivial Massey products in Lie algebra cohomology 5. Massey products in Koszul homology of local rings 6. Massey products in Toric Topology and nonformality of polyhedral products Acknowledgments References Discreteness of deformations of cocompact discrete subgroups 1. Introduction 2. Preliminaries 3. Deformations and discreteness Acknowledgments References Topological isotopy and Cochran’s derived invariants 1. Introduction 2. Invariants 3. Realization 4. Rationality Acknowledgment References Geometric description of the Hochschild cohomology of group algebras 1. Introduction 2. The smooth version of Johnson’s problem 3. Hochschild (co)homology 4. Hochschild homology 5. Conclusion 6. Addendum: Comparison of homology and cohomology References A user’s guide to basic knot and link theory 1. Main definitions and results on knots 2. Main definitions and results on links 3. Some basic tools 4. The Gauss linking number modulo 2 via plane diagrams 5. The Arf invariant 6. Appendix: Proper colorings 7. Oriented knots and links and their connected sums 8. The Gauss linking number via plane diagrams 9. The Casson invariant 10. Alexander-Conway polynomial 11. Vassiliev-Goussarov invariants 12. Appendix: Some details Acknowledgments References Group actions: Entropy, mixing, spectra, and generic properties 1. Basic definitions 2. ?-actions and spectra of boundary value problems 3. Entropy 4. Generic properties: Definition 5. Approximation of group actions 6. Cardinal-valued invariants of measure-preserving transformations 7. Spectral problems 8. Rokhlin’s multiple mixing problem 9. Linear extensions of dynamical systems: The spectral theory and MET References Rokhlin’s theorem, a problem and a conjecture Maximally inflected real trigonal curves on Hirzebruch surfaces 1. Introduction 2. Trigonal curves and elliptic surfaces 3. Dessins 4. Skeletons 5. A constructive description of maximally inflected trigonal curves 6. Rigid isotopies and week equivalence Acknowledgment References Back Cover