دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: نویسندگان: Ariel Fernández سری: Chapman & Hall/CRC Artificial Intelligence and Robotics Series ISBN (شابک) : 103236632X, 9781032366326 ناشر: CRC Press/Chapman & Hall سال نشر: 2022 تعداد صفحات: 228 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 34 مگابایت
در صورت تبدیل فایل کتاب Topological Dynamics in Metamodel Discovery with Artificial Intelligence: From Biomedical to Cosmological Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دینامیک توپولوژیکی در کشف متامدل با هوش مصنوعی: از فناوریهای زیست پزشکی تا کیهانشناسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
استفاده از هوش مصنوعی (AI) برای کشف مدل در سیستمهای دینامیکی، هر دو رشته را متقاطع و متحول میکند و عصر جدیدی از علم دادهمحور را نوید میدهد. این کتاب در خط مقدم این تلاش قرار می گیرد و کشف مدل را به سطحی بالاتر می برد.
این کتاب در رابطه با هوش مصنوعی، نقش هوش مصنوعی را در کشف مدل برای سیستم های دینامیکی مشخص می کند. با اجرای روشهای توپولوژیکی برای ساخت متامدلها، با سطوح پیچیدگی و سلسلهمقیاسهای چندمقیاسی درگیر میشود که تاکنون برای علم دادهها محدودیتهایی در نظر گرفته نشده است.
ویژگیهای کلیدی:</ p>
در نظر گرفته شده برای دانشجویان فارغ التحصیل، محققین و شاغلین علاقه مند به سیستم های دینامیکی تقویت شده توسط هوش مصنوعی یا یادگیری ماشینی و در زمینه بیولوژیکی آنها ، مهندسی و برنامه های کاربردی زیست پزشکی، این کتاب یک منبع آموزشی قابل توجه برای افرادی است که در پروژه های بین رشته ای مرتبط با هوش مصنوعی فعالیت می کنند.
The leveraging of artificial intelligence (AI) for model discovery in dynamical systems is cross-fertilizing and revolutionizing both disciplines, heralding a new era of data-driven science. This book is placed at the forefront of this endeavor, taking model discovery to the next level.
Dealing with artificial intelligence, this book delineates AI’s role in model discovery for dynamical systems. With the implementation of topological methods to construct metamodels, it engages with levels of complexity and multiscale hierarchies hitherto considered off limits for data science.
Key Features:
Intended for graduate students, researchers, and practitioners interested in dynamical systems empowered by AI or machine learning and in their biological, engineering, and biomedical applications, this book will represent a significant educational resource for people engaged in AI-related cross-disciplinary projects.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface About the Author Part I: Fundamentals Chapter 1: Artificial Intelligence and Dynamical Systems 1.1 Artificial Intelligence for Model Discovery 1.2 Primer on Deep Learning 1.3 Neural Networks as Models for Dynamical Systems 1.4 Deep Learning with Biomedical Applications 1.5 Convolutional Neural Networks in Drug Design 1.6 Deep Learning for Dynamic Targets in Biomedicine 1.7 Deep Learning Has Solved One of the Protein Folding Problems 1.8 AI-Empowered Metamodel Discovery for Hierarchical Dynamical Systems: Adiabatic Regimes, Latent Manifolds, Quotient Spaces 1.9 Metadynamics for Metamodels: Mapping Out the Quotient Manifold with a Dedicated Autoencoder 1.10 Metamodels for the Digital Mind References Chapter 2: Topological Methods for Metamodel Discovery with Artificial Intelligence 2.1 AI-Based Metamodel Discovery for Hierarchically Complex Dynamical Systems 2.2 Autoencoders of Latent Coordinates in Dynamical Systems 2.3 Deep Learning Scheme to Discover Underlying Differential Equations from Time Series 2.4 Autoencoders for Molecular Dynamics of Biological Matter 2.5 Topological Dynamics on Latent Manifolds: Metamodels without Equations 2.6 Unraveling Topological Quotient Spaces for Dynamical Systems Metamodeling 2.7 Learning to Encode and Propagate Topological Dynamics: Metamodel for Ubiquitin Folding in the Cell 2.8 Metamodels for Hierarchical Dynamics Discovered through Autoencoder Batteries References Part II: Applications Chapter 3: Artificial Intelligence Reverse-Engineers In Vivo Protein Folding 3.1 Deconstructing In Vivo Protein Folding: Topological Metamodel Created by Transformer Technology 3.2 Empowering Molecular Dynamics with Transformer Technology 3.2.1 Propagating the Topological Dynamics in Textual Form with a Transformer Neural Network 3.2.2 Topological Metamodeling Requires Two Autoencoders and a Transformer 3.3 Protein Folding as a Textually Encodable Dynamical Metamodel: Mathematical Validation 3.4 Injecting In Vivo Reality into the Transformer-Generated Metamodel 3.5 Propagating In Vitro Folding Pathways 3.6 Atomistic MD Simulation of an In Vivo Folding Setting 3.7 Propagation of In Vivo Folding Trajectories Using Transformer Technology 3.8 The AI Platform to Generate In Vivo Folding Pathways 3.9 Reverse-Engineering the Expeditious In Vivo Context I: Iterative Annealing in the Apo GroEL Chamber 3.10 Reverse-Engineering the In Vivo Context II: GroEL Chamber in the (ATP) 7 State 3.11 In Vivo Pathways for Protein Folding: AI Metamodels Live Up to the Challenge 3.12 Metamodels with Implicit Content: Co-translational Protein Folding References Chapter 4: The Drug-Induced Protein Folding Problem: Metamodels for Dynamic Targeting 4.1 Protein Structure is a Dynamic Object: Lesson for Targeted Therapy 4.2 Deep Learning to Target Moving Targets in Molecular Therapy 4.3 AI-Based Metamodel to Infer Drug-Induced Folds in Targeted Proteins 4.4 Learning to Induce Folds in Targeted Proteins 4.5 Experimental Corroboration of the Dynamic Metamodel for Drug-Induced Folding 4.6 A Topological Metamodel of the Induced Folding Dynamics Corroborates the Experimentally Validated Structural Adaptation in the Drug/Target WBZ_4/JNK Complex 4.7 AI Teaches Drug Designers How to Target Proteins by Exploiting a Dynamic Metamodel of Induced Folding References Chapter 5: Targeting Protein Structure in the Absence of Structure: Metamodels for Biomedical Applications 5.1 Therapeutic Disruption of Dysfunctional Protein Complexes in the Absence of Reported Structure 5.2 AI Guides the Therapeutic Disruption of a Dysfunctional Complex with No Reported Structure 5.3 Regulatory Sites in the Epistructure of a Protein Target 5.4 AI-Based Metamodel to Infer Regulation-Modulated Epitopes in the Absence of Target Structure 5.5 Structural Metamodel for Therapeutic Disruption of Dysfunctional Deregulated Protein Complexes in the Absence of Structure 5.6 Experimentally Validating the Dynamic Metamodel of the Target Protein Structure by Developing a Molecular Targeted Therapy for Heart Failure 5.7 The Dynamic Metamodel of Protein Structure Enables Discovery OF Biological Cooperativity References Chapter 6: Autoencoder as Quantum Metamodel of Gravity: Toward an AI-Based Cosmological Technology 6.1 The Quest for Quantum Gravity 6.2 Quantum Gravity Autoencoder for a Neural Network with Emergent Gravity 6.3 Relativistic Strings-Turned Quanta in Machine Learning Physics 6.4 The Universe as a Variational Autoencoder 6.5 Quantum Gravity Autoencoders and the Origin of the Universe 6.6 Technologies for Cosmological Manipulation Leveraging Quantum Gravity Autoencoders References Epilogue E.1 Topological Metamodels Breed Computational Intuition E.2 AI Probes an Equivalence between “Wormhole” and Quantum Entanglement E.3 Emergent Space-Time Topology Created by Entangling Quantum-Gravity Autoencoders E.4 Metamodel Discovery with Extra Dimensions and Lost Symmetries: Artificial Intelligence Deconstructs Quantum Mechanics References Appendix A.1 Code for Dehydron Identification A.2 Machine Learning Method to Infer Structure Wrapping and Dhydron Pattern in the Absence of Protein Structure: The Twilighter A.3 AI Platform to empower Molecular Dynamics A.3.1 Dynamical Feature Extraction for AI-Empowered Protein Folding Simulations A.3.2 How to Extend Molecular Dynamics Simulations A.3.3 AI-Generated Protein Folding Pathways A.3.4 Molecular Dynamics Run from an AI Platform A.4 Protein Folding Pathway Generated by Transformer-Engendered Topological Dynamics A.5 Endowing the Quantum Mechanics Autoencoder with Emergent Gravity A.6 Incorporationg an Extra Dimension in Space-Time through an Autoencoder of the Standard Model: Decoding the Higgs Mechanism References Index