دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Hemen Dutta (editor)
سری: Mathematics and its Applications
ISBN (شابک) : 0367532662, 9780367532666
ناشر: CRC Press
سال نشر: 2020
تعداد صفحات: 338
[339]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب Topics in Contemporary Mathematical Analysis and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب موضوعاتی در تحلیل و کاربردهای ریاضی معاصر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
موضوعات در تحلیل و کاربردهای ریاضی معاصر شامل چندین موضوع معاصر در زمینه تجزیه و تحلیل ریاضی، کاربردهای آنها و ارتباط آنها در سایر زمینه های تحقیق و مطالعه است. خوانندگان تحولات مربوط به موضوعات ارائه شده را تا حد معقولی با مشکلات مختلف جدید برای مطالعه بیشتر خواهند یافت. هر فصل مشکلات و مسائل مرتبط، روشهای راهحل، و کاربردهای احتمالی یا مرتبط بودن آنها در سایر حوزههای علمی را به دقت ارائه میکند.
< /p>
این کتاب برای پژوهشگران، مربیان، دانشآموزان و کتابخانههای بخش نوشته شده است.
Topics in Contemporary Mathematical Analysis and Applications encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. The readers will find developments concerning the topics presented to a reasonable extent with various new problems for further study. Each chapter carefully presents the related problems and issues, methods of solutions, and their possible applications or relevancies in other scientific areas.
This book is written for individual researchers, educators, students, and department libraries.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editor Contributors Chapter 1 Certain Banach-Space Operators Acting on Free Poisson Elements Induced by Orthogonal Projections 1.1 Introduction 1.2 Preliminaries 1.3 Some Banach *-Algebras Induced by Projections 1.4 Weighted-Semicircular Elements Induced by Q 1.5 Semicircular Elements Induced by Q 1.6 The Semicircular Filterization (L[sub(Q)], Ί) 1.7 Free Poisson Elements of L[sub(Q)] 1.7.1 Free Poisson Elements 1.7.2 Certain Free Poisson Elements Induced by S 1.7.3 Some Free Poisson Elements Induced by S U X 1.8 Free Weighted-Poisson Elements of L[sub(Q)] 1.8.1 Free Weighted-Poisson Elements 1.8.2 Free Weighted-Poisson Elements Induced by S U X 1.8.3 Free Weighted-Poisson Elements Induced by X 1.9 Shifts on Z and Integer-Shifts on L[sub(Q)] 1.9.1 (±)-Shifts on Z 1.9.2 Integer-Shifts on L[sub(Q)] 1.9.3 Free Probability on L[sub(Q)] Under the Group-Action of B 1.10 Banach-Space Operators on L[sub(Q)] Generated by B 1.10.1 Deformed Free Probability of L[sub(Q)] by A 1.10.2 Deformed Semicircular Laws on L[sub(Q)] by A 1.11 Deformed Free Poisson Distributions on L[sub(Q)] by A References Chapter 2 Linear Positive Operators Involving Orthogonal Polynomials 2.1 Operators Based on Orthogonal Polynomials 2.1.1 Notations 2.1.2 Definitions 2.1.3 Appell Polynomials 2.1.4 Boas-Buck-Type Polynomials 2.1.5 Charlier Polynomials 2.1.6 Approximation by Appell Polynomials 2.1.7 Approximation by Operators Including Generalized Appell Polynomials 2.1.8 Szász-Type Operators Involving Multiple Appell Polynomials 2.1.9 Kantorovich-Type Generalization of K[sub(n)] Operators 2.1.10 Kantorovich Variant of Szász Operators Based on Brenke-Type Polynomials 2.1.11 Operators Defined by Means of Boas-Buck-Type Polynomials 2.1.12 Operators Defined by Means of Charlier Polynomials 2.1.13 Operators Defined by Using q-Calculus Acknowledgment References Chapter 3 Approximation by Kantorovich variant of l??Schurer Operators and Related Numerical Results 3.1 Introduction 3.2 Auxiliary Results 3.3 Approximation Behavior of λ-Schurer-Kantorovich Operators 3.4 Voronovskaja-type Approximation Theorems 3.5 Graphical and Numerical Results 3.6 Conclusion References Chapter 4 Characterizations of Rough Fractional-Type Integral Operators on Variable Exponent Vanishing Morrey-Type Spaces 4.1 Introduction 4.2 Preliminaries and Main Results 4.2.1 Variable Exponent Lebesgue Spaces L[sup(P(·))] 4.2.2 Variable Exponent Morrey Spaces L[sup(P(·))],λ[sup(·)] 4.2.3 Variable Exponent Vanishing Generalized Morrey Spaces 4.2.4 Variable Exponent-Generalized Campanato Spaces C[sub(Π)][sup(q(·),ɣ(·))] 4.3 Conclusion Funding References Chapter 5 Compact-Like Operators in Vector Lattices Normed by Locally Solid Lattices 5.1 Introduction 5.2 Preliminaries 5.3 pτ-Continuous and pτ-Bounded Operators 5.4 upτ-Continuous Operators 5.5 The Compact-Like Operators Bibliography Chapter 6 On Indexed Product Summability of an Infinite Series 6.1 Introduction 6.1.1 Historical Background 6.1.2 Notations and Definitions 6.2 Known Results 6.3 Main Results 6.4 Proof of Main Results 6.5 Conclusion References Chapter 7 On Some Important Inequalities 7.1 Concepts of Affinity and Convexity 7.1.1 Affine and Convex Sets and Functions 7.1.2 Effect of Affine and Convex Combinations in R[sup(n)] 7.1.3 Coefficients of Affine and Convex Combinations 7.1.4 Support and Secant Hyperplanes 7.2 The Jensen Inequality 7.2.1 Discrete and Integral Forms of the Jensen Inequality 7.2.2 Generalizations of the Jensen Inequality 7.3 The Hermite-Hadamard Inequality 7.3.1 The Classic Form of the Hermite-Hadamard Inequality 7.3.2 Generalizations of the Hermite-Hadamard Inequality 7.4 The Rogers-Hölder Inequality 7.4.1 Integral and Discrete Forms of the Rogers-Hölder Inequality 7.4.2 Generalizations of the Rogers-Hölder Inequality 7.5 The Minkowski Inequality 7.5.1 Integral and Discrete Forms of the Minkowski Inequality 7.5.2 Generalizations of the Minkowski Inequality Bibliography Chapter 8 Refinements of Young’s Integral Inequality via Fundamental Inequalities and Mean Value Theorems for Derivatives 8.1 Young’s Integral Inequality and Several Refinements 8.1.1 Young’s Integral Inequality 8.1.2 Refinements of Young’s Integral Inequality via Lagrange’s Mean Value Theorem 8.1.3 Refinements of Young’s Integral Inequality via Hermite-Hadamard’s and Čebyšev’s Integral Inequalities 8.1.4 Refinements of Young’s Integral Inequality via Jensen’s Discrete and Integral Inequalities 8.1.5 Refinements of Young’s Integral Inequality via H¨older’s Integral Inequality 8.1.6 Refinements of Young’s Integral Inequality via Taylor’s Mean Value Theorem of Lagrange’s Type Remainder 8.1.7 Refinements of Young’s Integral Inequality via Taylor’s Mean Value Theorem of Cauchy’s Type Remainder and H¨older’s Integral Inequality 8.1.8 Refinements of Young’s Integral Inequality via Taylor’s Mean Value Theorem of Cauchy’s Type Remainder and Čebyšev’s Integral Inequality 8.1.9 Refinements of Young’s Integral Inequality via Taylor’s Mean Value Theorem of Cauchy’s Type Remainder and Jensen’s Inequalities 8.1.10 Refinements of Young’s Integral Inequality via Taylor’s Mean Value Theorem of Cauchy’s Type Remainder and Integral Inequalities of Hermite-Hadamard Type for the Product of Two Convex Functions 8.1.11 Three Examples Showing Refinements of Young’s Integral Inequality 8.1.11.1 First Example 8.1.11.2 Second Example 8.1.11.3 Third Example 8.2 New Refinements of Young’s Integral Inequality via Pólya’s Type Integral Inequalities 8.2.1 Refinements of Young’s Integral Inequality in Terms of Bounds of the First Derivative 8.2.2 Refinements of Young’s Integral Inequality in Terms of Bounds of the Second Derivative 8.2.3 Refinements of Young’s Integral Inequality in Terms of Bounds of Higher-Order Derivatives 8.2.4 Refinements of Young’s Integral Inequality in Terms of L[sup(p)]-Norms 8.2.5 Three Examples for New Refinements of Young’s Integral Inequalities 8.2.5.1 First Example 8.2.5.2 Second Example 8.2.5.3 Third Example 8.3 More Remarks Acknowledgments Bibliography Chapter 9 On the Coefficient Estimates for New Subclasses of Biunivalent Functions Associated with Subordination and Fibonacci Numbers 9.1 The Definition and Elementary Properties of Univalent Functions 9.1.1 Integral Operators 9.2 Subclasses of Analytic and Univalent Functions 9.3 The Class Σ 9.4 Functions with Positive Real Part 9.4.1 Subordination 9.5 Bi-univalent Function Classes S[sub(t,Σ)][sup(μ)] and K[sub(t,Σ)][sup(μ)] (P̃) 9.6 Inequalities for the Taylor-Maclaurin Coefficients 9.7 Concluding Remarks and Observations Acknowledgment Bibliography Chapter 10 Fixed Point of Multivalued Cyclic Contractions 10.1 Multivalued Mappings in Metric Spaces 10.2 Multivalued Cyclic F-Contractive Mappings 10.3 Fixed Point Results of Multivalued Cyclic F-Contractive Mappings 10.4 Stability of Fixed Point Sets of Cyclic F-Contractions 10.5 Multivalued Mappings under Cyclic Simulation Function 10.6 Fixed Point Theorems under Cyclic Simulation Function 10.7 Stability of Fixed Point Sets under Cyclic Simulation Function Bibliography Chapter 11 Significance and Relevances of Functional Equations in Various Fields 11.1 Introduction 11.2 Application of Functional Equation in Geometry 11.3 Application of Functional Equation in Financial Management 11.4 Application of Functional Equation in Information Theory 11.5 Application of Functional Equation in Wireless Sensor Networks 11.6 Application of Rational Functional Equation 11.6.1 Geometrical Interpretation of Equation (11.17) 11.6.2 An Application of Equation (11.17) to Resistances Connected in Parallel 11.7 Application of RQD and RQA Functional Equations 11.8 Application of Other Multiplicative Inverse Functional Equations 11.8.1 Multiplicative Inverse Second Power Difference and Adjoint Functional Equations 11.8.2 Multiplicative Inverse Third Power Functional Equation 11.8.3 Multiplicative Inverse Fourth Power Functional Equation 11.8.4 Multiplicative Inverse Quintic Functional Equation 11.8.5 Multiplicative Inverse Functional Equation Involving Two Variables 11.8.6 System of Multiplicative Inverse Functional Equations with Three Variables 11.9 Applications of Functional Equations in Other Fields 11.10 Open Problems Bibliography Chapter 12 Unified-Type Nondifferentiable Second-Order Symmetric Duality Results over Arbitrary Cones 12.1 Introduction 12.2 Literature Review 12.3 Preliminaries and Definitions 12.3.1 Definition 12.3.2 Definition 12.3.3 Definition 12.3.4 Definition 12.4 Nondifferentiable Second-Order Mixed-Type Symmetric Duality Model Over Arbitrary Cones 12.4.1 Remarks 12.5 Duality Theorems 12.6 Self-Duality 12.7 Conclusion Bibliography Index