ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Topics in Contemporary Mathematical Analysis and Applications

دانلود کتاب موضوعاتی در تحلیل و کاربردهای ریاضی معاصر

Topics in Contemporary Mathematical Analysis and Applications

مشخصات کتاب

Topics in Contemporary Mathematical Analysis and Applications

ویرایش:  
نویسندگان:   
سری: Mathematics and its Applications 
ISBN (شابک) : 0367532662, 9780367532666 
ناشر: CRC Press 
سال نشر: 2020 
تعداد صفحات: 338
[339] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 5 Mb 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Topics in Contemporary Mathematical Analysis and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب موضوعاتی در تحلیل و کاربردهای ریاضی معاصر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب موضوعاتی در تحلیل و کاربردهای ریاضی معاصر



موضوعات در تحلیل و کاربردهای ریاضی معاصر شامل چندین موضوع معاصر در زمینه تجزیه و تحلیل ریاضی، کاربردهای آنها و ارتباط آنها در سایر زمینه های تحقیق و مطالعه است. خوانندگان تحولات مربوط به موضوعات ارائه شده را تا حد معقولی با مشکلات مختلف جدید برای مطالعه بیشتر خواهند یافت. هر فصل مشکلات و مسائل مرتبط، روش‌های راه‌حل، و کاربردهای احتمالی یا مرتبط بودن آن‌ها در سایر حوزه‌های علمی را به دقت ارائه می‌کند.

  • با هدف غنی سازی درک روش ها، مشکلات و کاربردها
  • با ارائه پیشرفت‌های لازم در جزئیات معقول، درک درستی از مشکلات تحقیق را ارائه می‌دهد.
  • < /p>

  • درباره کاربردها و کاربردهای تئوری عملگرها، نظریه نقطه ثابت، نابرابری ها، توابع دو ظرفیتی، معادلات تابعی و برنامه نویسی با هدف مقیاسی بحث می کند و مسائل مرتبط و راه های مختلفی را برای حل چنین مسائلی ارائه می دهد

این کتاب برای پژوهشگران، مربیان، دانش‌آموزان و کتابخانه‌های بخش نوشته شده است.


توضیحاتی درمورد کتاب به خارجی

Topics in Contemporary Mathematical Analysis and Applications encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. The readers will find developments concerning the topics presented to a reasonable extent with various new problems for further study. Each chapter carefully presents the related problems and issues, methods of solutions, and their possible applications or relevancies in other scientific areas.

  • Aims at enriching the understanding of methods, problems, and applications
  • Offers an understanding of research problems by presenting the necessary developments in reasonable details
  • Discusses applications and uses of operator theory, fixed-point theory, inequalities, bi-univalent functions, functional equations, and scalar-objective programming, and presents various associated problems and ways to solve such problems

This book is written for individual researchers, educators, students, and department libraries.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Preface
Editor
Contributors
Chapter 1 Certain Banach-Space Operators Acting on Free Poisson Elements Induced by Orthogonal Projections
	1.1 Introduction
	1.2 Preliminaries
	1.3 Some Banach *-Algebras Induced by Projections
	1.4 Weighted-Semicircular Elements Induced by Q
	1.5 Semicircular Elements Induced by Q
	1.6 The Semicircular Filterization (L[sub(Q)], Ί)
	1.7 Free Poisson Elements of L[sub(Q)]
		1.7.1 Free Poisson Elements
		1.7.2 Certain Free Poisson Elements Induced by S
		1.7.3 Some Free Poisson Elements Induced by S U X
	1.8 Free Weighted-Poisson Elements of L[sub(Q)]
		1.8.1 Free Weighted-Poisson Elements
		1.8.2 Free Weighted-Poisson Elements Induced by S U X
		1.8.3 Free Weighted-Poisson Elements Induced by X
	1.9 Shifts on Z and Integer-Shifts on L[sub(Q)]
		1.9.1 (±)-Shifts on Z
		1.9.2 Integer-Shifts on L[sub(Q)]
		1.9.3 Free Probability on L[sub(Q)] Under the Group-Action of B
	1.10 Banach-Space Operators on L[sub(Q)] Generated by B
		1.10.1 Deformed Free Probability of L[sub(Q)] by A
		1.10.2 Deformed Semicircular Laws on L[sub(Q)] by A
	1.11 Deformed Free Poisson Distributions on L[sub(Q)] by A
	References
Chapter 2 Linear Positive Operators Involving Orthogonal Polynomials
	2.1 Operators Based on Orthogonal Polynomials
		2.1.1 Notations
		2.1.2 Definitions
		2.1.3 Appell Polynomials
		2.1.4 Boas-Buck-Type Polynomials
		2.1.5 Charlier Polynomials
		2.1.6 Approximation by Appell Polynomials
		2.1.7 Approximation by Operators Including Generalized Appell Polynomials
		2.1.8 Szász-Type Operators Involving Multiple Appell Polynomials
		2.1.9 Kantorovich-Type Generalization of K[sub(n)] Operators
		2.1.10 Kantorovich Variant of Szász Operators Based on Brenke-Type Polynomials
		2.1.11 Operators Defined by Means of Boas-Buck-Type Polynomials
		2.1.12 Operators Defined by Means of Charlier Polynomials
		2.1.13 Operators Defined by Using q-Calculus
	Acknowledgment
	References
Chapter 3 Approximation by Kantorovich variant of l??Schurer Operators and Related Numerical Results
	3.1 Introduction
	3.2 Auxiliary Results
	3.3 Approximation Behavior of λ-Schurer-Kantorovich Operators
	3.4 Voronovskaja-type Approximation Theorems
	3.5 Graphical and Numerical Results
	3.6 Conclusion
	References
Chapter 4 Characterizations of Rough Fractional-Type Integral Operators on Variable Exponent Vanishing Morrey-Type Spaces
	4.1 Introduction
	4.2 Preliminaries and Main Results
		4.2.1 Variable Exponent Lebesgue Spaces L[sup(P(·))]
		4.2.2 Variable Exponent Morrey Spaces L[sup(P(·))],λ[sup(·)]
		4.2.3 Variable Exponent Vanishing Generalized Morrey Spaces
		4.2.4 Variable Exponent-Generalized Campanato Spaces C[sub(Π)][sup(q(·),ɣ(·))]
	4.3 Conclusion
	Funding
	References
Chapter 5 Compact-Like Operators in Vector Lattices Normed by Locally Solid Lattices
	5.1 Introduction
	5.2 Preliminaries
	5.3 pτ-Continuous and pτ-Bounded Operators
	5.4 upτ-Continuous Operators
	5.5 The Compact-Like Operators
	Bibliography
Chapter 6 On Indexed Product Summability of an Infinite Series
	6.1 Introduction
		6.1.1 Historical Background
		6.1.2 Notations and Definitions
	6.2 Known Results
	6.3 Main Results
	6.4 Proof of Main Results
	6.5 Conclusion
	References
Chapter 7 On Some Important Inequalities
	7.1 Concepts of Affinity and Convexity
		7.1.1 Affine and Convex Sets and Functions
		7.1.2 Effect of Affine and Convex Combinations in R[sup(n)]
		7.1.3 Coefficients of Affine and Convex Combinations
		7.1.4 Support and Secant Hyperplanes
	7.2 The Jensen Inequality
		7.2.1 Discrete and Integral Forms of the Jensen Inequality
		7.2.2 Generalizations of the Jensen Inequality
	7.3 The Hermite-Hadamard Inequality
		7.3.1 The Classic Form of the Hermite-Hadamard Inequality
		7.3.2 Generalizations of the Hermite-Hadamard Inequality
	7.4 The Rogers-Hölder Inequality
		7.4.1 Integral and Discrete Forms of the Rogers-Hölder Inequality
		7.4.2 Generalizations of the Rogers-Hölder Inequality
	7.5 The Minkowski Inequality
		7.5.1 Integral and Discrete Forms of the Minkowski Inequality
		7.5.2 Generalizations of the Minkowski Inequality
	Bibliography
Chapter 8 Refinements of Young’s Integral Inequality via Fundamental Inequalities and Mean Value Theorems for Derivatives
	8.1 Young’s Integral Inequality and Several Refinements
		8.1.1 Young’s Integral Inequality
		8.1.2 Refinements of Young’s Integral Inequality via Lagrange’s Mean Value Theorem
		8.1.3 Refinements of Young’s Integral Inequality via Hermite-Hadamard’s and Čebyšev’s Integral Inequalities
		8.1.4 Refinements of Young’s Integral Inequality via Jensen’s Discrete and Integral Inequalities
		8.1.5 Refinements of Young’s Integral Inequality via H¨older’s Integral Inequality
		8.1.6 Refinements of Young’s Integral Inequality via Taylor’s Mean Value Theorem of Lagrange’s Type Remainder
		8.1.7 Refinements of Young’s Integral Inequality via Taylor’s Mean Value Theorem of Cauchy’s Type Remainder and H¨older’s Integral Inequality
		8.1.8 Refinements of Young’s Integral Inequality via Taylor’s Mean Value Theorem of Cauchy’s Type Remainder and Čebyšev’s Integral Inequality
		8.1.9 Refinements of Young’s Integral Inequality via Taylor’s Mean Value Theorem of Cauchy’s Type Remainder and Jensen’s Inequalities
		8.1.10 Refinements of Young’s Integral Inequality via Taylor’s Mean Value Theorem of Cauchy’s Type Remainder and Integral Inequalities of Hermite-Hadamard Type for the Product of Two Convex Functions
		8.1.11 Three Examples Showing Refinements of Young’s Integral Inequality
			8.1.11.1 First Example
			8.1.11.2 Second Example
			8.1.11.3 Third Example
	8.2 New Refinements of Young’s Integral Inequality via Pólya’s Type Integral Inequalities
		8.2.1 Refinements of Young’s Integral Inequality in Terms of Bounds of the First Derivative
		8.2.2 Refinements of Young’s Integral Inequality in Terms of Bounds of the Second Derivative
		8.2.3 Refinements of Young’s Integral Inequality in Terms of Bounds of Higher-Order Derivatives
		8.2.4 Refinements of Young’s Integral Inequality in Terms of L[sup(p)]-Norms
		8.2.5 Three Examples for New Refinements of Young’s Integral Inequalities
			8.2.5.1 First Example
			8.2.5.2 Second Example
			8.2.5.3 Third Example
	8.3 More Remarks
	Acknowledgments
	Bibliography
Chapter 9 On the Coefficient Estimates for New Subclasses of Biunivalent Functions Associated with Subordination and Fibonacci Numbers
	9.1 The Definition and Elementary Properties of Univalent Functions
		9.1.1 Integral Operators
	9.2 Subclasses of Analytic and Univalent Functions
	9.3 The Class Σ
	9.4 Functions with Positive Real Part
		9.4.1 Subordination
	9.5 Bi-univalent Function Classes S[sub(t,Σ)][sup(μ)] and K[sub(t,Σ)][sup(μ)] (P̃)
	9.6 Inequalities for the Taylor-Maclaurin Coefficients
	9.7 Concluding Remarks and Observations
	Acknowledgment
	Bibliography
Chapter 10 Fixed Point of Multivalued Cyclic Contractions
	10.1 Multivalued Mappings in Metric Spaces
	10.2 Multivalued Cyclic F-Contractive Mappings
	10.3 Fixed Point Results of Multivalued Cyclic F-Contractive Mappings
	10.4 Stability of Fixed Point Sets of Cyclic F-Contractions
	10.5 Multivalued Mappings under Cyclic Simulation Function
	10.6 Fixed Point Theorems under Cyclic Simulation Function
	10.7 Stability of Fixed Point Sets under Cyclic Simulation Function
	Bibliography
Chapter 11 Significance and Relevances of Functional Equations in Various Fields
	11.1 Introduction
	11.2 Application of Functional Equation in Geometry
	11.3 Application of Functional Equation in Financial Management
	11.4 Application of Functional Equation in Information Theory
	11.5 Application of Functional Equation in Wireless Sensor Networks
	11.6 Application of Rational Functional Equation
		11.6.1 Geometrical Interpretation of Equation (11.17)
		11.6.2 An Application of Equation (11.17) to Resistances Connected in Parallel
	11.7 Application of RQD and RQA Functional Equations
	11.8 Application of Other Multiplicative Inverse Functional Equations
		11.8.1 Multiplicative Inverse Second Power Difference and Adjoint Functional Equations
		11.8.2 Multiplicative Inverse Third Power Functional Equation
		11.8.3 Multiplicative Inverse Fourth Power Functional Equation
		11.8.4 Multiplicative Inverse Quintic Functional Equation
		11.8.5 Multiplicative Inverse Functional Equation Involving Two Variables
		11.8.6 System of Multiplicative Inverse Functional Equations with Three Variables
	11.9 Applications of Functional Equations in Other Fields
	11.10 Open Problems
	Bibliography
Chapter 12 Unified-Type Nondifferentiable Second-Order Symmetric Duality Results over Arbitrary Cones
	12.1 Introduction
	12.2 Literature Review
	12.3 Preliminaries and Definitions
		12.3.1 Definition
		12.3.2 Definition
		12.3.3 Definition
		12.3.4 Definition
	12.4 Nondifferentiable Second-Order Mixed-Type Symmetric Duality Model Over Arbitrary Cones
		12.4.1 Remarks
	12.5 Duality Theorems
	12.6 Self-Duality
	12.7 Conclusion
	Bibliography
Index




نظرات کاربران