دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Marco Peixeiro
سری:
ISBN (شابک) : 161729988X, 9781617299889
ناشر: Manning
سال نشر: 2022
تعداد صفحات: 458
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 مگابایت
در صورت تبدیل فایل کتاب Time Series Forecasting in Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پیش بینی سری های زمانی در پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدل های پیش بینی را از الگوهای مبتنی بر زمان در داده های
خود بسازید. مدلهای آماری شامل روشهای یادگیری عمیق جدید برای
پیشبینی سریهای زمانی.
در پیشبینی سریهای زمانی در پایتون
خواهید آموخت که چگونه به:
یک مشکل پیشبینی سریهای زمانی را بشناسید و
یک مدل پیشبینی عملکردی بسازید
ایجاد مدلهای پیشبینی تک متغیری که اثرات
فصلی و متغیرهای خارجی را در نظر میگیرند
ساخت مدلهای پیشبینی چند متغیره برای
پیشبینی چندین سری زمانی در یک زمان< br>
با استفاده از یادگیری عمیق برای پیشبینی
سریهای زمانی از مجموعه دادههای بزرگ استفاده کنید
خودکار کردن فرآیند پیشبینی
پیشبینی سریهای زمانی در پایتون
به شما میآموزد که قدرتمند بسازید. مدل های پیش بینی از
داده های مبتنی بر زمان هر مدلی که ایجاد میکنید مرتبط، مفید است
و پیادهسازی آن با پایتون آسان است. مجموعه دادههای جالب دنیای
واقعی مانند قیمت سهام روزانه Google و دادههای اقتصادی برای
ایالات متحده را کاوش خواهید کرد، و به سرعت از اصول اولیه به
توسعه مدلهای مقیاس بزرگ که از ابزارهای یادگیری عمیق مانند
TensorFlow استفاده میکنند، پیشرفت خواهید کرد.
خرید چاپ این کتاب شامل یک کتاب الکترونیکی رایگان در قالبهای
PDF، Kindle، و ePub از انتشارات Manning است.
درباره فناوری
شما میتوانید آینده را با کمک کمی از پایتون، یادگیری عمیق و
دادههای سری زمانی پیشبینی کنید! پیشبینی سریهای زمانی تکنیکی
برای مدلسازی دادههای زمان محور برای شناسایی رویدادهای آینده
است. کتابخانههای جدید پایتون و ابزارهای قدرتمند یادگیری عمیق،
پیشبینی سریهای زمانی دقیق را آسانتر از همیشه میکنند.
درباره کتاب
پیشبینی سریهای زمانی در
پایتون آموزش میدهد. شما چگونه می توانید پیش بینی
های فوری و معنی دار را از داده های مبتنی بر زمان مانند گزارش
ها، تجزیه و تحلیل مشتری و سایر جریان های رویداد بدست آورید. در
این کتاب قابل دسترس، روشهای آماری و یادگیری عمیق را برای
پیشبینی سریهای زمانی، که به طور کامل با کد پایتون مشروح نشان
داده شده است، یاد خواهید گرفت. مهارتهای خود را با پروژههایی
مانند پیشبینی حجم نسخههای دارو در آینده توسعه دهید، و به زودی
آماده خواهید بود تا پیشبینیهای دقیق و روشنگرانه خود را
بسازید.
آنچه در داخل است
مدلهایی برای اثرات فصلی ایجاد کنید و
متغیرهای خارجی
مدلهای پیشبینی چند متغیره برای پیشبینی
سریهای زمانی متعدد
یادگیری عمیق برای مجموعههای داده بزرگ
فرآیند پیشبینی را خودکار کنید
درباره خواننده
برای دانشمندان دادهای که با Python و TensorFlow آشنا
هستند.< br>
درباره نویسنده
Marco Peixeiro
یک مربی با تجربه علم داده است که به عنوان دانشمند داده
برای یکی از بزرگترین بانک های کانادا کار کرده است.
فهرست مطالب
قسمت 1 زمان برای هیچکس منتظر نمی ماند
1 درک پیش بینی سری های زمانی
2 پیش بینی ساده لوحانه از آینده
3 رفتن به یک پیاده روی تصادفی
قسمت 2 پیش بینی با مدلهای آماری
4 مدلسازی یک فرآیند میانگین متحرک
5 مدلسازی یک فرآیند اتورگرسیو
6 مدلسازی سریهای زمانی پیچیده
7 پیشبینی سریهای زمانی غیر ثابت
8 حسابداری برای فصلی بودن
9 افزودن خارجی متغیرهای مدل ما
10 پیش بینی سری های زمانی متعدد
11 Capstone: پیش بینی تعداد نسخه های داروهای ضد دیابت در
استرالیا
قسمت 3 پیش بینی در مقیاس بزرگ با یادگیری عمیق
12 معرفی یادگیری عمیق برای پیش بینی سری های زمانی
13 پنجره سازی داده ها و ایجاد خطوط پایه برای یادگیری عمیق
14 گام های کوچک با یادگیری عمیق
15 به یاد آوردن گذشته با LSTM
16 فیلتر کردن یک سری زمانی با CNN
17 استفاده از پیش بینی ها برای انجام پیش بینی های بیشتر
18 Capstone: پیش بینی مصرف برق یک خانوار
قسمت 4 پیش بینی خودکار در مقیاس
19 پیش بینی خودکار سری های زمانی با پیامبر
20 Capstone: پیش بینی میانگین قیمت خرده فروشی ماهیانه استیک در
کانادا< br> 21 فراتر و بالاتر
Build predictive models from time-based patterns in your
data. Master statistical models including new deep learning
approaches for time series forecasting.
In Time Series Forecasting in Python
you will learn how to:
Recognize a time series forecasting problem
and build a performant predictive model
Create univariate forecasting models that
account for seasonal effects and external variables
Build multivariate forecasting models to
predict many time series at once
Leverage large datasets by using deep
learning for forecasting time series
Automate the forecasting process
Time Series Forecasting in Python
teaches you to build powerful predictive models from
time-based data. Every model you create is relevant, useful,
and easy to implement with Python. You’ll explore interesting
real-world datasets like Google’s daily stock price and
economic data for the USA, quickly progressing from the basics
to developing large-scale models that use deep learning tools
like TensorFlow.
Purchase of the print book includes a free eBook in PDF,
Kindle, and ePub formats from Manning Publications.
About the technology
You can predict the future—with a little help from Python, deep
learning, and time series data! Time series forecasting is a
technique for modeling time-centric data to identify upcoming
events. New Python libraries and powerful deep learning tools
make accurate time series forecasts easier than ever
before.
About the book
Time Series Forecasting in
Python teaches you how to get immediate,
meaningful predictions from time-based data such as logs,
customer analytics, and other event streams. In this accessible
book, you’ll learn statistical and deep learning methods for
time series forecasting, fully demonstrated with annotated
Python code. Develop your skills with projects like predicting
the future volume of drug prescriptions, and you’ll soon be
ready to build your own accurate, insightful forecasts.
What's inside
Create models for seasonal effects and
external variables
Multivariate forecasting models to predict
multiple time series
Deep learning for large datasets
Automate the forecasting process
About the reader
For data scientists familiar with Python and TensorFlow.
About the author
Marco Peixeiro
is a seasoned data science instructor who has worked as a
data scientist for one of Canada’s largest banks.
Table of Contents
PART 1 TIME WAITS FOR NO ONE
1 Understanding time series forecasting
2 A naive prediction of the future
3 Going on a random walk
PART 2 FORECASTING WITH STATISTICAL MODELS
4 Modeling a moving average process
5 Modeling an autoregressive process
6 Modeling complex time series
7 Forecasting non-stationary time series
8 Accounting for seasonality
9 Adding external variables to our model
10 Forecasting multiple time series
11 Capstone: Forecasting the number of antidiabetic drug
prescriptions in Australia
PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING
12 Introducing deep learning for time series forecasting
13 Data windowing and creating baselines for deep
learning
14 Baby steps with deep learning
15 Remembering the past with LSTM
16 Filtering a time series with CNN
17 Using predictions to make more predictions
18 Capstone: Forecasting the electric power consumption of a
household
PART 4 AUTOMATING FORECASTING AT SCALE
19 Automating time series forecasting with Prophet
20 Capstone: Forecasting the monthly average retail price of
steak in Canada
21 Going above and beyond
Time Series Forecasting in Python brief contents contents preface acknowledgments about this book Who should read this book? How this book is organized: A roadmap About the code liveBook discussion forum Author online about the author about the cover illustration Part 1—Time waits for no one 1 Understanding time series forecasting 1.1 Introducing time series 1.1.1 Components of a time series 1.2 Bird’s-eye view of time series forecasting 1.2.1 Setting a goal 1.2.2 Determining what must be forecast to achieve your goal 1.2.3 Setting the horizon of the forecast 1.2.4 Gathering the data 1.2.5 Developing a forecasting model 1.2.6 Deploying to production 1.2.7 Monitoring 1.2.8 Collecting new data 1.3 How time series forecasting is different from other regression tasks 1.3.1 Time series have an order 1.3.2 Time series sometimes do not have features 1.4 Next steps 2 A naive prediction of the future 2.1 Defining a baseline model 2.2 Forecasting the historical mean 2.2.1 Setup for baseline implementations 2.2.2 Implementing the historical mean baseline 2.3 Forecasting last year’s mean 2.4 Predicting using the last known value 2.5 Implementing the naive seasonal forecast 2.6 Next steps Summary 3 Going on a random walk 3.1 The random walk process 3.1.1 Simulating a random walk process 3.2 Identifying a random walk 3.2.1 Stationarity 3.2.2 Testing for stationarity 3.2.3 The autocorrelation function 3.2.4 Putting it all together 3.2.5 Is GOOGL a random walk? 3.3 Forecasting a random walk 3.3.1 Forecasting on a long horizon 3.3.2 Forecasting the next timestep 3.4 Next steps 3.5 Exercises 3.5.1 Simulate and forecast a random walk 3.5.2 Forecast the daily closing price of GOOGL 3.5.3 Forecast the daily closing price of a stock of your choice Summary Part 2—Forecasting with statistical models 4 Modeling a moving average process 4.1 Defining a moving average process 4.1.1 Identifying the order of a moving average process 4.2 Forecasting a moving average process 4.3 Next steps 4.4 Exercises 4.4.1 Simulate an MA(2) process and make forecasts 4.4.2 Simulate an MA(q) process and make forecasts Summary 5 Modeling an autoregressive process 5.1 Predicting the average weekly foot traffic in a retail store 5.2 Defining the autoregressive process 5.3 Finding the order of a stationary autoregressive process 5.3.1 The partial autocorrelation function (PACF) 5.4 Forecasting an autoregressive process 5.5 Next steps 5.6 Exercises 5.6.1 Simulate an AR(2) process and make forecasts 5.6.2 Simulate an AR(p) process and make forecasts Summary 6 Modeling complex time series 6.1 Forecasting bandwidth usage for data centers 6.2 Examining the autoregressive moving average process 6.3 Identifying a stationary ARMA process 6.4 Devising a general modeling procedure 6.4.1 Understanding the Akaike information criterion (AIC) 6.4.2 Selecting a model using the AIC 6.4.3 Understanding residual analysis 6.4.4 Performing residual analysis 6.5 Applying the general modeling procedure 6.6 Forecasting bandwidth usage 6.7 Next steps 6.8 Exercises 6.8.1 Make predictions on the simulated ARMA(1,1) process 6.8.2 Simulate an ARMA(2,2) process and make forecasts Summary 7 Forecasting non-stationary time series 7.1 Defining the autoregressive integrated moving average model 7.2 Modifying the general modeling procedure to account for non-stationary series 7.3 Forecasting a non-stationary times series 7.4 Next steps 7.5 Exercises 7.5.1 Apply the ARIMA(p,d,q) model on the datasets from chapters 4, 5, and 6 Summary 8 Accounting for seasonality 8.1 Examining the SARIMA(p,d,q)(P,D,Q)m model 8.2 Identifying seasonal patterns in a time series 8.3 Forecasting the number of monthly air passengers 8.3.1 Forecasting with an ARIMA(p,d,q) model 8.3.2 Forecasting with a SARIMA(p,d,q)(P,D,Q)m model 8.3.3 Comparing the performance of each forecasting method 8.4 Next steps 8.5 Exercises 8.5.1 Apply the SARIMA(p,d,q)(P,D,Q)m model on the Johnson & Johnson dataset Summary 9 Adding external variables to our model 9.1 Examining the SARIMAX model 9.1.1 Exploring the exogenous variables of the US macroeconomics dataset 9.1.2 Caveat for using SARIMAX 9.2 Forecasting the real GDP using the SARIMAX model 9.3 Next steps 9.4 Exercises 9.4.1 Use all exogenous variables in a SARIMAX model to predict the real GDP Summary 10 Forecasting multiple time series 10.1 Examining the VAR model 10.2 Designing a modeling procedure for the VAR(p) model 10.2.1 Exploring the Granger causality test 10.3 Forecasting real disposable income and real consumption 10.4 Next steps 10.5 Exercises 10.5.1 Use a VARMA model to predict realdpi and realcons 10.5.2 Use a VARMAX model to predict realdpi and realcons Summary 11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia 11.1 Importing the required libraries and loading the data 11.2 Visualizing the series and its components 11.3 Modeling the data 11.3.1 Performing model selection 11.3.2 Conducting residual analysis 11.4 Forecasting and evaluating the model’s performance Next steps Part 3—Large-scale forecasting with deep learning 12 Introducing deep learning for time series forecasting 12.1 When to use deep learning for time series forecasting 12.2 Exploring the different types of deep learning models 12.3 Getting ready to apply deep learning for forecasting 12.3.1 Performing data exploration 12.3.2 Feature engineering and data splitting 12.4 Next steps 12.5 Exercise Summary 13 Data windowing and creating baselines for deep learning 13.1 Creating windows of data 13.1.1 Exploring how deep learning models are trained for time series forecasting 13.1.2 Implementing the DataWindow class 13.2 Applying baseline models 13.2.1 Single-step baseline model 13.2.2 Multi-step baseline models 13.2.3 Multi-output baseline model 13.3 Next steps 13.4 Exercises Summary 14 Baby steps with deep learning 14.1 Implementing a linear model 14.1.1 Implementing a single-step linear model 14.1.2 Implementing a multi-step linear model 14.1.3 Implementing a multi-output linear model 14.2 Implementing a deep neural network 14.2.1 Implementing a deep neural network as a single-step model 14.2.2 Implementing a deep neural network as a multi-step model 14.2.3 Implementing a deep neural network as a multi-output model 14.3 Next steps 14.4 Exercises Summary 15 Remembering the past with LSTM 15.1 Exploring the recurrent neural network (RNN) 15.2 Examining the LSTM architecture 15.2.1 The forget gate 15.2.2 The input gate 15.2.3 The output gate 15.3 Implementing the LSTM architecture 15.3.1 Implementing an LSTM as a single-step model 15.3.2 Implementing an LSTM as a multi-step model 15.3.3 Implementing an LSTM as a multi-output model 15.4 Next steps 15.5 Exercises Summary 16 Filtering a time series with CNN 16.1 Examining the convolutional neural network (CNN) 16.2 Implementing a CNN 16.2.1 Implementing a CNN as a single-step model 16.2.2 Implementing a CNN as a multi-step model 16.2.3 Implementing a CNN as a multi-output model 16.3 Next steps 16.4 Exercises Summary 17 Using predictions to make more predictions 17.1 Examining the ARLSTM architecture 17.2 Building an autoregressive LSTM model 17.3 Next steps 17.4 Exercises Summary 18 Capstone: Forecasting the electric power consumption of a household 18.1 Understanding the capstone project 18.1.1 Objective of this capstone project 18.2 Data wrangling and preprocessing 18.2.1 Dealing with missing data 18.2.2 Data conversion 18.2.3 Data resampling 18.3 Feature engineering 18.3.1 Removing unnecessary columns 18.3.2 Identifying the seasonal period 18.3.3 Splitting and scaling the data 18.4 Preparing for modeling with deep learning 18.4.1 Initial setup 18.4.2 Defining the DataWindow class 18.4.3 Utility function to train our models 18.5 Modeling with deep learning 18.5.1 Baseline models 18.5.2 Linear model 18.5.3 Deep neural network 18.5.4 Long short-term memory (LSTM) model 18.5.5 Convolutional neural network (CNN) 18.5.6 Combining a CNN with an LSTM 18.5.7 The autoregressive LSTM model 18.5.8 Selecting the best model 18.6 Next steps Part 4—Automating forecasting at scale 19 Automating time series forecasting with Prophet 19.1 Overview of the automated forecasting libraries 19.2 Exploring Prophet 19.3 Basic forecasting with Prophet 19.4 Exploring Prophet’s advanced functionality 19.4.1 Visualization capabilities 19.4.2 Cross-validation and performance metrics 19.4.3 Hyperparameter tuning 19.5 Implementing a robust forecasting process with Prophet 19.5.1 Forecasting project: Predicting the popularity of “chocolate” searches on Google 19.5.2 Experiment: Can SARIMA do better? 19.6 Next steps 19.7 Exercises 19.7.1 Forecast the number of air passengers 19.7.2 Forecast the volume of antidiabetic drug prescriptions 19.7.3 Forecast the popularity of a keyword on Google Trends Summary 20 Capstone: Forecasting the monthly average retail price of steak in Canada 20.1 Understanding the capstone project 20.1.1 Objective of the capstone project 20.2 Data preprocessing and visualization 20.3 Modeling with Prophet 20.4 Optional: Develop a SARIMA model 20.5 Next steps 21 Going above and beyond 21.1 Summarizing what you’ve learned 21.1.1 Statistical methods for forecasting 21.1.2 Deep learning methods for forecasting 21.1.3 Automating the forecasting process 21.2 What if forecasting does not work? 21.3 Other applications of time series data 21.4 Keep practicing Appendix—Installation instructions Installing Anaconda Python Jupyter Notebooks GitHub Repository Installing Prophet Installing libraries in Anaconda index Symbols Numerics A B C D E F G H I J K L M N O P Q R S T U V W Y