دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Akshay R Kulkarni, Adarsha Shivananda, Anoosh Kulkarni, V Adithya Krishnan سری: ISBN (شابک) : 9781484289778, 9781484289785 ناشر: Apress سال نشر: 2023 تعداد صفحات: [188] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دستور العمل های الگوریتم های سری زمانی: پیاده سازی تکنیک های یادگیری ماشینی و یادگیری عمیق با پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پیاده سازی عملی مفاهیم مختلف برای تجزیه و تحلیل سری های زمانی و مدل سازی با پایتون را از طریق دستور العمل هایی به سبک حل مسئله، شروع با خواندن داده ها و پیش پردازش، آموزش می دهد. با مبانی پیشبینی سریهای زمانی با استفاده از روشهای مدلسازی آماری مانند AR (خودرگرسیون)، MA (متوسط متحرک)، ARMA (میانگین متحرک اتورگرسیو)، و ARIMA (میانگین متحرک یکپارچه اتورگرسیو) آغاز میشود. در مرحله بعد، مدلسازی تک متغیره و چند متغیره را با استفاده از بستههای منبع باز مختلف مانند Fbprohet، stats model و sklearn خواهید آموخت. همچنین بینشهایی در مورد مدلهای رگرسیون مبتنی بر یادگیری ماشین کلاسیک مانند randomForest، Xgboost و LightGBM برای مشکلات پیشبینی کسب خواهید کرد. این کتاب با نشان دادن اجرای مدلهای یادگیری عمیق (LSTMs و ANN) برای پیشبینی سریهای زمانی به پایان میرسد. هر فصل شامل چندین مثال کد و تصویر است. پس از اتمام این کتاب، درک اساسی از مفاهیم مختلف مربوط به سری های زمانی و اجرای آن در پایتون خواهید داشت. آنچه شما یاد خواهید گرفت پیاده سازی تکنیک های مختلف در تحلیل سری های زمانی با استفاده از پایتون. برای پیشبینی سریهای زمانی از روشهای مدلسازی آماری مانند AR (خودرگرسیون)، MA (میانگین متحرک)، ARMA (میانگین متحرک اتورگرسیو) و ARIMA (میانگین متحرک یکپارچه اتورگرسیو) استفاده کنید. درک مدلسازی تک متغیره و چند متغیره برای پیشبینی سریهای زمانی پیش بینی با استفاده از تکنیک های یادگیری ماشینی و یادگیری عمیق مانند GBM و LSTM (حافظه کوتاه مدت بلند مدت) این کتاب برای چه کسی است دانشمندان داده، مهندسان یادگیری ماشین و توسعه دهندگان نرم افزار علاقه مند به تجزیه و تحلیل سری های زمانی.
This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book, you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will Learn Implement various techniques in time series analysis using Python. Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecasting Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is For Data Scientists, Machine Learning Engineers, and software developers interested in time series analysis.
Table of Contents About the Authors About the Technical Reviewer Preface Chapter 1: Getting Started with Time Series Recipe 1-1A. Reading Time Series Objects (Air Passengers) Problem Solution How It Works Step 1A-1. Import the required libraries. Step 1A-2. Write a parsing function for the datetime column. Step 1A-3. Read the data. Recipe 1-1B. Reading Time Series Objects (India GDP Data) Problem Solution How It Works Step 1B-1. Import the required libraries. Step 1B-2. Read India’s GDP time series data. Step 1B-3. Plot the time series. Step 1B-4. Store and retrieve as a pickle. Recipe 1-2. Saving Time Series Objects Problem Solution How It Works Step 2-1. Save the previously loaded time series object. Recipe 1-3A. Exploring Types of Time Series Data: Univariate Problem Solution How It Works Step 3A-1. Import the required libraries. Step 3A-2. Read the time series data. Step 3A-3. Plot the time series. Recipe 1-3B. Exploring Types of Time Series Data: Multivariate Problem Solution How It Works Step 3B-1. Import the required libraries. Step 3B-2. Write the parsing function. Step 3B-3. Load the dataset. Step 3B-4. Do basic preprocessing. Step 3B-5. Plot each series. Recipe 1-4A. Time Series Components: Trends Problem Solution How It Works Step 4A-1. Import the required libraries. Step 4A-2. Write the parsing function. Step 4A-3. Load the dataset. Step 4A-4. Plot the time series. Recipe 1-4B. Time Series Components: Seasonality Problem Solution How It Works Step 4B-1. Import the required libraries. Step 4B-2. Read the data. Step 4B-3. Plot the time series. Step 4B-4. Plot a box plot by month. Step 4B-5. Plot a box plot by year. Recipe 1-4C. Time Series Components: Seasonality (cont’d.) Problem Solution How It Works Step 4C-1. Import the required libraries. Step 4C-2. Read tractor sales data. Step 4C-3. Set a datetime series to use as an index. Step 4C-4. Format the data. Step 4C-5. Plot the time series. Step 4C-6. Plot a box plot by month. Recipe 1-5A. Time Series Decomposition: Additive Model Problem Solution How It Works Step 5A-1. Load the required libraries. Step 5A-2. Read and process retail turnover data. Step 5A-3. Plot the time series. Step 5A-4. Decompose the time series. Step 5A-5. Separate the components. Recipe 1-5B. Time Series Decomposition: Multiplicative Model Problem Solution How It Works Step 5B-1. Load the required libraries. Step 5B-2. Load air passenger data. Step 5B-3. Process the data. Step 5B-4. Decompose the time series. Step 5B-5. Get the seasonal component. Recipe 1-6. Visualization of Seasonality Problem Solution How It Works Step 6-1. Import the required libraries. Step 6-2. Load the data. Step 6-3. Process the data. Step 6-4. Pivot the table. Step 6-5. Plot the line charts. Step 6-6. Plot the box plots. Chapter 2: Statistical Univariate Modeling Recipe 2-1. Moving Average (MA) Forecast Problem Solution How It Works Step 1-1. Import the required libraries. Step 1-2. Read the data. Step 1-3. Preprocess the data. Step 1-4. Plot the time series. Step 1-5. Use a rolling mean to get the moving average. Step 1-6. Plot the forecast vs. the actual. Recipe 2-2. Autoregressive (AR) Model Problem Solution How It Works Step 2-1. Import the required libraries. Step 2-2. Load and plot the dataset. Step 2-3. Check for stationarity of the time series data. Step 2-4. Find the order of the AR model to be trained. Step 2-5. Create training and test data. Step 2-6. Call and fit the AR model. Step 2-7. Output the model summary. Step 2-8. Get the predictions from the model. Step 2-9. Plot the predictions vs. actuals. Recipe 2-3. Autoregressive Moving Average (ARMA) Model Problem Solution How It Works Step 3-1. Import the required libraries. Step 3-2. Load the data. Step 3-3. Preprocess the data. Step 3-4. Plot the time series. Step 3-5. Do a train-test split. Step 3-6. Plot time the series after the train-test split. Step 3-7. Define the actuals from training. Step 3-8. Initialize and fit the ARMA model. Step 3-9. Get the test predictions. Step 3-10. Plot the train, test, and predictions as a line plot. Step 3-11. Calculate the RMSE score for the model. Recipe 2-4. Autoregressive Integrated Moving Average (ARIMA) Model Problem Solution How It Works Step 4-1. Make the data stationary by differencing. Step 4-2. Check the ADF (Augmented Dickey-Fuller) test for stationarity. Step 4-3. Get the Auto Correlation Function and Partial Auto Correlation Function values. Step 4-4. Plot the ACF and PACF to get p- and q-values. Step 4-5. Initialize and fit the ARIMA model. Step 4-6. Get the test predictions. Step 4-7. Plot the train, test, and predictions as a line plot. Step 4-8. Calculate the RMSE score for the model. Recipe 2-5. Grid Search Hyperparameter Tuning for ARIMA Model Problem Solution How It Works Step 5-1. Write a function to evaluate the ARIMA model. Step 5-2. Write a function to evaluate multiple models through grid search hyperparameter tuning. Step 5-3. Perform the grid search hyperparameter tuning by calling the defined functions. Step 5-4. Initialize and fit the ARIMA model with the best configuration. Step 5-5. Get the test predictions. Step 5-6. Plot the train, test, and predictions as a line plot. Step 5-7. Calculate the RMSE score for the model. Recipe 2-6. Seasonal Autoregressive Integrated Moving Average (SARIMA) Model Problem Solution How It Works Step 6-1. Initialize and fit the SARIMA model. Step 6-2. Get the test predictions. Step 6-3. Plot the train, test, and predictions as a line plot. Step 6-4. Calculate the RMSE score for the model. Recipe 2-7. Simple Exponential Smoothing (SES) Model Problem Solution How It Works Step 7-1. Initialize and fit the SES model. Step 7-2. Get the test predictions. Step 7-3. Plot the train, test, and predictions as a line plot. Step 7-4. Calculate the RMSE score for the model. Recipe 2-8. Holt-Winters (HW) Model Problem Solution How It Works Step 8-1. Initialize and fit the HW model. Step 8-2. Get the test predictions. Step 8-3. Plot the train, test, and predictions as a line plot. Step 8-4. Calculate the RMSE score for the model. Chapter 3: Advanced Univariate and Statistical Multivariate Modeling Recipe 3-1. FBProphet Univariate Time Series Modeling Problem Solution How It Works Step 1-1. Import the required libraries. Step 1-2. Read the data. Step 1-3. Create the training dataset. Step 1-4. Initialize a basic Facebook Prophet model. Step 1-5. Create the future dataframe for forecasting. Step 1-6. Getting the predictions. Step 1-7. Plot the forecast. Step 1-8. Plot the forecast components. Recipe 3-2. FBProphet Modeling by Controlling the Change Points Problem Solution How It Works Step 2-1. Plot the change points. Step 2-2. Print the change points. Step 2-3. Check the magnitude of each changepoint. Step 2-4. Tweak the n_changepoints hyperparameter and forecasting. Step 2-5. Tweak the changepoint_range hyperparameter and forecasting. Recipe 3-3. FBProphet Modeling by Adjusting Trends Problem Solution How It Works Step 3-1. Increase the changepoint_prior_scale hyperparameter. Step 3-2. Forecast and plot the output. Step 3-3. Decrease the changepoint_prior_scale hyperparameter. Step 3-4. Forecast and plot the output. Recipe 3-4. FBProphet Modeling with Holidays Problem Solution How It Works Step 4-1. Create a custom holiday dataframe. Step 4-2. Initialize and fit the Prophet model with the holidays dataframe. Step 4-3. Create a future dataframe for the forecast. Step 4-4. Get the forecast. Recipe 3-5. FBProphet Modeling with Added Regressors Problem Solution How It Works Step 5-1. Label and encode the type column. Step 5-2. Get the data in the required format. Step 5-3. Do a train-test split. Step 5-4. Initialize the Prophet model and add a regressor. Step 5-5. Fit the data. Step 5-6. Forecast the data in the test. Recipe 3-6. Time Series Forecasting Using Auto-ARIMA Problem Solution How It Works Step 6-1. Import the required libraries. Step 6-2. Read the data. Step 6-3. Preprocess the data. Step 6-4. Analyze the data pattern. Step 6-5. Test for stationarity. Step 6-6. Split the dataset to train and test. Step 6-7. Build the Auto-ARIMA model. Step 6-8. Forecast using the test data. Step 6-9. Evaluate the model. Recipe 3-7. Multivariate Time Series Forecasting Using the VAR Model Problem Solution How It Works Step 7-1. Import the required libraries. Step 7-2. Read the data. Step 7-3. Preprocess the data. Step 7-4. Check the stationarity. Step 7-5. Split the dataset into train-test. Step 7-6. Build the VAR model and forecast on the test set. Step 7-7. Evaluate the model. Chapter 4: Machine Learning Regression–based Forecasting Recipe 4-1. Formulating Regression Modeling for Time Series Forecasting Problem Solution How It Works Step 1-1. Install and import the required libraries. Step 1-2. Collect the data. Step 1-3. Preprocess the data and create features (feature engineering). Step 1-4. Select the features. Step 1-5. Work on the train-test and validation split. Recipe 4-2. Implementing the XGBoost Model Problem Solution How It Works Step 2-1. Build the XGBoost model. Step 2-2. Evaluate the XGBoost model in the test set. Step 2-3. Evaluate the XGBoost model in the validation set. Recipe 4-3. Implementing the LightGBM Model Problem Solution How It Works Step 3-1. Build the LightGBM model. Step 3-2. Evaluate the LightGBM model in the test set. Step 3-3. Evaluate the LightGBM model in the validation set. Recipe 4-4. Implementing the Random Forest Model Problem Solution How It Works Step 4-1. Build a random forest model. Step 4-2. Evaluate the LightGBM model in the test set. Step 4-3. Evaluate the LightGBM model in the validation set. Recipe 4-5. Selecting the Best Model Problem Solution How It Works Step 5-1. Evaluate the method. Step 5-2. Compare performance in the test set. Step 5-3. Plot the LightGBM model prediction against the actuals in the test set. Step 5-4. Compare performance in the validation set. Step 5-5. Plot the LightGBM model prediction against actuals in the validation set. Chapter 5: Deep Learning–based Time Series Forecasting Recipe 5-1. Time Series Forecasting Using LSTM Problem Solution How It Works Step 1-1. Import the required libraries. Step 1-2. Use DOM_hourly.csv data for analysis. Step 1-3. Read the data. Step 1-4. Check for missing data. Step 1-5. Plot the time series data. Step 1-6. Write a function to normalize the data. Step 1-7. Call the normalize_fn function. Step 1-7. Plot the data after normalization. Step 1-8. Create a function to perform data preparation and train-test split. Step 1-9. Call the data_prep function. Step 1-10. Initialize the LSTM model. Step 1-11. Create the model summary. Step 1-12. Fit the model. Step 1-13. Make the model predictions and print the score. Step 1-14. Write a function to plot the predictions. Step 1-15. Call the plotting_actual_vs_pred function. Recipe 5-2. Multivariate Time Series Forecasting Using the GRU Model Problem Solution How It Works Step 2-1. Import the required libraries. Step 2-2. Read the data. Step 2-3. Analyze the data. Step 2-4. Preprocess the data. Step 2-5. Do a train-test split. Step 2-6. Build the model. Step 2-7. Evaluate and predict the model. Recipe 5-3. Time Series Forecasting Using NeuralProphet Problem Solution How It Works Step 3-1. Import the required libraries. Step 3-2. Read the data. Step 3-3. Preprocess the data. Step 3-4. Build the model and make predictions. Recipe 5-4. Time Series Forecasting Using RNN Problem Solution How It Works Step 4-1. Initialize the RNN model. Step 4-2. Create the model summary. Step 4-3. Fit the model. Step 4-4. Make the model predictions and print the score. Step 4-5 is the same as step 1-14 from Recipe 5-1. Step 4-6. Call the plotting_actual_vs_pred function. Index