دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [14 ed.] نویسندگان: Joel R. Hass, Christopher E. Heil, Maurice D. Weir سری: ISBN (شابک) : 1292253223, 9781292253220 ناشر: Pearson سال نشر: 2019 تعداد صفحات: 1232 [1244] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 103 Mb
در صورت تبدیل فایل کتاب Thomas' Calculus in SI Units به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حساب توماس در واحدهای SI نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای دوره های سه ترم یا چهار چهارم حساب دیفرانسیل و انتگرال برای دانش آموزانی که در رشته های ریاضی، مهندسی یا علوم تحصیل می کنند، وضوح و دقت حساب توماس به دانش آموزان کمک می کند تا به سطح مهارت و بلوغ ریاضی مورد نیاز خود برسند، اما با پشتیبانی از دانش آموزانی که از طریق تعادل به آن نیاز دارند. از توضیحات واضح و شهودی، کاربردهای فعلی و مفاهیم کلی. در نسخه چهاردهم SI، کریستوفر هیل (موسسه فناوری گرجستان) با نویسنده جوئل هاس همکاری می کند تا بهترین متن را در مورد متن آزمایش شده توماس حفظ کند و در عین حال هر کلمه و هر اثر هنری را با در نظر گرفتن دانش آموزان امروزی بازنگری کند. نتیجه متنی است که فراتر از به خاطر سپردن فرمول ها و رویه های معمول است تا به دانش آموزان کمک کند مفاهیم کلیدی را تعمیم دهند و درک عمیق تری ایجاد کنند. MyLabTM ریاضی گنجانده نشده است. دانشجویان، اگر MyLab جزء توصیه شده/اجباری دوره است، لطفاً از استاد خود ISBN و شناسه دوره صحیح را بخواهید. MyLab فقط باید در صورت نیاز توسط یک مربی خریداری شود. مربیان، برای کسب اطلاعات بیشتر با نماینده پیرسون خود تماس بگیرید. با جفت کردن این متن با MyLab به هر دانش آموزی برسید MathMyLab™ پلت فرم آموزش و یادگیری است که به شما امکان می دهد به هر دانش آموزی دسترسی پیدا کنید. MyLab با ترکیب محتوای نویسنده قابل اعتماد با ابزارهای دیجیتال و یک پلت فرم انعطاف پذیر، تجربه یادگیری را شخصی می کند و نتایج را برای هر دانش آموز بهبود می بخشد.
For three-semester or four-quarter courses in Calculus for students majoring in mathematics, engineering, or science Clarity and precisionThomas' Calculus helps students reach the level of mathematical proficiency and maturity you require, but with support for students who need it through its balance of clear and intuitive explanations, current applications, and generalized concepts. In the 14th SI Edition, new co-author Christopher Heil (Georgia Institute of Technology) partners with author Joel Hass to preserve what is best about Thomas' time-tested text while reconsidering every word and every piece of art with today's students in mind. The result is a text that goes beyond memorizing formulas and routine procedures to help students generalize key concepts and develop deeper understanding. MyLabTM Math not included. Students, if MyLab is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN and course ID. MyLab should only be purchased when required by an instructor. Instructors, contact your Pearson rep for more information.Reach every student by pairing this text with MyLab MathMyLab™ is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student.
Front Cover Title Page Copyright Page Contents Preface 1 Functions 1.1 Functions and Their Graphs 1.2 Combining Functions; Shifting and Scaling Graphs 1.3 Trigonometric Functions 1.4 Graphing with Software Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 2 Limits and Continuity 2.1 Rates of Change and Tangent Lines to Curves 2.2 Limit of a Function and Limit Laws 2.3 The Precise Definition of a Limit 2.4 One‐Sided Limits 2.5 Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 3 Derivatives 3.1 Tangent Lines and the Derivative at a Point 3.2 The Derivative as a Function 3.3 Differentiation Rules 3.4 The Derivative as a Rate of Change 3.5 Derivatives of Trigonometric Functions 3.6 The Chain Rule 3.7 Implicit Differentiation 3.8 Related Rates 3.9 Linearization and Differentials Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 4 Applications of Derivatives 4.1 Extreme Values of Functions on Closed Intervals 4.2 The Mean Value Theorem 4.3 Monotonic Functions and the First Derivative Test 4.4 Concavity and Curve Sketching 4.5 Applied Optimization 4.6 Newton’s Method 4.7 Antiderivatives Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 5 Integrals 5.1 Area and Estimating with Finite Sums 5.2 Sigma Notation and Limits of Finite Sums 5.3 The Definite Integral 5.4 The Fundamental Theorem of Calculus 5.5 Indefinite Integrals and the Substitution Method 5.6 Definite Integral Substitutions and the Area Between Curves Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 6 Applications of Definite Integrals 6.1 Volumes Using Cross‐Sections 6.2 Volumes Using Cylindrical Shells 6.3 Arc Length 6.4 Areas of Surfaces of Revolution 6.5 Work and Fluid Forces 6.6 Moments and Centers of Mass Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 7 Transcendental Functions 7.1 Inverse Functions and Their Derivatives 7.2 Natural Logarithms 7.3 Exponential Functions 7.4 Exponential Change and Separable Differential Equations 7.5 Indeterminate Forms and L’HÔpital’s Rule 7.6 Inverse Trigonometric Functions 7.7 Hyperbolic Functions 7.8 Relative Rates of Growth Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises 8 Techniques of Integration 8.1 Using Basic Integration Formulas 8.2 Integration by Parts 8.3 Trigonometric Integrals 8.4 Trigonometric Substitutions 8.5 Integration of Rational Functions by Partial Fractions 8.6 Integral Tables and Computer Algebra Systems 8.7 Numerical Integration 8.8 Improper Integrals Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 9 Infinite Sequences and Series 9.1 Sequences 9.2 Infinite Series 9.3 The Integral Test 9.4 Comparison Tests 9.5 Absolute Convergence; The Ratio and Root Tests 9.6 Alternating Series and Conditional Convergence 9.7 Power Series 9.8 Taylor and Maclaurin Series 9.9 Convergence of Taylor Series 9.10 Applications of Taylor Series Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 10 Parametric Equations and Polar Coordinates 10.1 Parametrizations of Plane Curves 10.2 Calculus with Parametric Curves 10.3 Polar Coordinates 10.4 Graphing Polar Coordinate Equations 10.5 Areas and Lengths in Polar Coordinates 10.6 Conic Sections 10.7 Conics in Polar Coordinates Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 11 Vectors and the Geometry of Space 11.1 Three‐Dimensional Coordinate Systems 11.2 Vectors 11.3 The Dot Product 11.4 The Cross Product 11.5 Lines and Planes in Space 11.6 Cylinders and Quadric Surfaces Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 12 Vector‐Valued Functions and Motion in Space 12.1 Curves in Space and Their Tangents 12.2 Integrals of Vector Functions; Projectile Motion 12.3 Arc Length in Space 12.4 Curvature and Normal Vectors of a Curve 12.5 Tangential and Normal Components of Acceleration 12.6 Velocity and Acceleration in Polar Coordinates Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 13 Partial Derivatives 13.1 Functions of Several Variables 13.2 Limits and Continuity in Higher Dimensions 13.3 Partial Derivatives 13.4 The Chain Rule 13.5 Directional Derivatives and Gradient Vectors 13.6 Tangent Planes and Differentials 13.7 Extreme Values and Saddle Points 13.8 Lagrange Multipliers 13.9 Taylor’s Formula for Two Variables 13.10 Partial Derivatives with Constrained Variables Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 14 Multiple Integrals 14.1 Double and Iterated Integrals over Rectangles 14.2 Double Integrals over General Regions 14.3 Area by Double Integration 14.4 Double Integrals in Polar Form 14.5 Triple Integrals in Rectangular Coordinates 14.6 Applications 14.7 Triple Integrals in Cylindrical and Spherical Coordinates 14.8 Substitutions in Multiple Integrals Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 15 Integrals and Vector Fields 15.1 Line Integrals of Scalar Functions 15.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 15.3 Path Independence, Conservative Fields, and Potential Functions 15.4 Green’s Theorem in the Plane 15.5 Surfaces and Area 15.6 Surface Integrals 15.7 Stokes’ Theorem 15.8 The Divergence Theorem and a Unified Theory Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 16 First‐Order Differential Equations 16.1 Solutions, Slope Fields, and Euler’s Method 16.2 First‐Order Linear Equations 16.3 Applications 16.4 Graphical Solutions of Autonomous Equations 16.5 Systems of Equations and Phase Planes Questions to Guide Your Review Practice Exercises Additional and Advanced Exercises Technology Application Projects 17 Second‐Order Differential Equations 17.1 Second‐Order Linear Equations 17.2 Nonhomogeneous Linear Equations 17.3 Applications 17.4 Euler Equations 17.5 Power‐Series Solutions Appendices A.1 Real Numbers and the Real Line A.2 Mathematical Induction A.3 Lines, Circles, and Parabolas A.4 Proofs of Limit Theorems A.5 Commonly Occurring Limits A.6 Theory of the Real Numbers A.7 Complex Numbers A.8 Probability A.9 The Distributive Law for Vector Cross Products A.10 The Mixed Derivative Theorem and the Increment Theorem Answers to Odd‐Numbered Exercises Credits Applications Index Subject Index A Brief Table of Integrals Basic Algebra Formulas Limits, Differentiation Rules, and Integration Rules Back Cover