دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Tai-shung Chung
سری:
ISBN (شابک) : 1566769434, 9781566769433
ناشر: Technomic Pub. Co
سال نشر: 2001
تعداد صفحات: 357
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Thermotropic liquid crystal polymers : thin-film polymerization, characterization, blends, and applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پلیمرهای کریستال مایع گرمازا: پلیمریزاسیون با لایه نازک ، خصوصیات ، مخلوط ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
THERMOTROPIC LIQUID CRYSTAL POLYMERS......Page 1
Table of Contents......Page 3
Preface......Page 7
Acknowledgements......Page 9
List of Contributors......Page 10
1. HISTORY OF DEVELOPMENT OF LIQUID CRYSTALLINE MATERIALS......Page 12
Table of Contents......Page 0
2.1. CLASSIFICATION AND STRUCTURE OF LCs......Page 14
2.2. CLASSIFICATION AND STRUCTURE OF LCPs......Page 16
3.1.2. Schlieren Texture......Page 17
3.1.3. Nematic Droplet......Page 19
3.1.4. Inversion Wall......Page 20
4.1. THEORIES OF NEMATIC LCs......Page 21
4.2. THEORIES OF LCPs......Page 23
5.1. RESEARCH FOCUS OF THERMOTROPIC MAIN-CHAIN LCPs......Page 24
5.2. CHEMICAL STRUCTURES OF MAIN-CHAIN LCPs......Page 25
5.4. END-USE PROPERTIES AND APPLICATIONS OF MAIN-CHAIN LCPs......Page 27
6. REFERENCES......Page 29
1. INTRODUCTION......Page 31
3. MORPHOLOGICAL CHANGES DURING THIN FILM POLYMERIZATION OF LIQUID CRYSTALLINE POLYMERS......Page 33
3.1. GENERATION OF THE LIQUID CRYSTAL PHASE......Page 34
3.2. ANNIHILATION OF DISCLINATIONS......Page 36
3.2.1. Annihilation Between Two Opposite Disclinations......Page 37
3.2.2. Shrinkage of Loop......Page 40
3.3. FORMATION OF BANDED TEXTURE......Page 41
4.1.2. Effect on the Morphology......Page 42
4.2. EFFECTS OF CATALYST ON THE THIN FILM POLYMERIZATION......Page 43
4.2.1. Effect of Catalyst Content on the Thin Film Polymerization......Page 45
4.2.2. Kinetics Study of Catalyzed and Uncatalyzed Polycondensation Reaction......Page 46
5. INVESTIGATION OF THE FORMATION OF LIQUID CRYSTALLINITY......Page 50
5.1. EFFECTS OF MONOMER STRUCTURES ON LIQUID CRYSTALLINITY......Page 51
5.1.1.1. Formation of Liquid Crystallinity during Polycondensation Reactions of ANA and ABA......Page 52
5.1.1.2. Crystallization during Polycondensation Reaction of AAA/IA......Page 54
5.1.2.1. Thin Film Polymerization Reactions of ANA/AAA/IA......Page 55
5.1.2.2. Thin Film Polymerization of ABA/AAA/IA......Page 57
5.2. EFFECTS OF REACTION TEMPERATURE ON THE LIQUID CRYSTALLINITY......Page 58
6.1. INTRODUCTION OF THE ELECTRIC FIELD EFFECTS ON LIQUID CRYSTALLINE MATERIALS......Page 59
6.3.1. Morphology of the LCP Polymerization System Between Conductive Glass Slides......Page 61
6.3.2. Response of the LC Phase under Electric Fields with Different Frequencies......Page 63
7. REFERENCES......Page 64
1. INTRODUCTION......Page 67
2. POLYMER CRYSTALLIZATION: THEORY......Page 70
2.1. ISOTHERMAL CRYSTALLIZATION......Page 71
2.2. NON-ISOTHERMAL CRYSTALLIZATION......Page 72
2.3.2. Depolarized Light Intensity......Page 73
3.1. LIQUID CRYSTALLINE POLYIMIDES......Page 74
3.1.1. LC-PEIMs from Structure 1......Page 75
3.1.3. LC-Polyimide from Biphenyl-3,3 ,4,4 -tetracarboxylic Imide......Page 78
3.1.5. LC-Polyimide from PMDA......Page 79
3.2. LC-POLY(AMIDE-IMIDE)......Page 88
3.3.1. Vectra A......Page 89
3.3.2. Vectra B......Page 92
3.3.3. Blends......Page 98
4. REFERENCES......Page 100
1. INTRODUCTION......Page 104
2.1.1. Vectra A950......Page 105
2.1.2. Vectra B950......Page 110
2.1.3. Xydar......Page 112
2.1.4. Zenite......Page 113
2.1.5. X7G......Page 116
2.2.1. Poly(p-oxybenzoyl) [P(pHBA)]......Page 117
2.2.2. LC Polyimide and Polyamides......Page 118
2.2.3. TLCPs with Flexible Units on the Main Chain......Page 120
2.2.4. TLCPs with Substitutes on the Aromatic Ring......Page 121
2.2.5. TLCP Blends......Page 122
2.2.6. Others......Page 123
3.1.1. Ozawa-Flynn Method......Page 125
3.1.2. Kissinger Method......Page 126
3.2.1. Commercially Available and Research-Grade TLCPs......Page 127
3.2.2. Others......Page 130
3.2.3. Mitsui’s Polyimide and Polyamide LCPs......Page 132
4. REFERENCES......Page 134
1. INTRODUCTION......Page 139
2.2. X-RAY SCATTERING FROM A DILUTE SYSTEM OF PARALLEL PACKED HARD RODS......Page 140
2.3. INTERFERENCE AMONG THE RODS......Page 143
3. NUMERICAL SIMULATION OF X-RAY DIFFRACTION PATTERNS OF SMECTIC SYSTEMS......Page 147
4. MONODOMAIN AND POLYDOMAIN STRUCTURES......Page 151
5. X-RAY SCATTERING FROM UNORIENTED LIQUID CRYSTALLINE POLYMERS, POWDER DIFFRACTION METHOD......Page 152
6. X-RAY SCATTERING FROM ORIENTED LIQUID CRYSTALLINE POLYMERS—FIBER SCATTERING......Page 157
7. SUMMARY......Page 160
8. APPENDIX 1......Page 161
9. APPENDIX 2......Page 163
10. REFERENCES......Page 164
1. INTRODUCTION......Page 165
2.1. CONTACT ANGLE AND THE YOUNG’S EQUATION......Page 167
2.2. ZISMAN’S METHOD......Page 168
2.4. FOWKES’ METHOD......Page 169
2.5. OWENS, WENDT, AND KAELBLE’S METHOD (TWO-LIQUID GEOMETRIC METHOD)......Page 170
2.7. LIFSHITZ-VAN DER WAALS-ACID-BASE METHOD (THREE-LIQUID ACID-BASE METHOD)......Page 171
2.8. THEORETICAL ESTIMATION FROM GROUP CONTRIBUTION HYPOTHESIS......Page 173
3.1. POLYMER MATERIALS......Page 174
3.3. CONTACT ANGLE MEASUREMENT......Page 175
3.4.2. Contact Angle and Surface Tension of Spin-Coated TLCP Films......Page 176
3.5. THEORETICAL ESTIMATION BY GROUP CONTRIBUTION METHOD......Page 180
4.1. THIN FILMS WITH DIFFERENT DEGREES OF POLYMERIZATION FOR CONTACT ANGLE MEASUREMENTS......Page 182
4.2.2. Surface Tension and Its Acid and Base Components of ABA/ANA Copolymers......Page 183
4.2.3.1. Lewis Base Parameters of Surface Tension......Page 187
4.2.3.2. Surface Tension of Poly(ABA) and Poly(ANA) Homopolymers......Page 188
5. REFERENCES......Page 189
1. INTRODUCTION......Page 191
2. IN SITU COMPOSITES......Page 193
2.1. FIBRILLATION......Page 194
2.1.1. Characteristics of LCPs......Page 195
2.1.2.1. Viscosity Ratio......Page 197
2.1.2.3. Other Factors......Page 199
2.2.1. Using a Third Component as a Compatibilizer......Page 200
2.2.1.1. Functionalized Polymers......Page 201
2.2.1.2. Ionomers......Page 203
2.2.2. Transesterification......Page 204
2.2.3. Ternary Polymer Blends......Page 206
2.3. MECHANICAL PERFORMANCE OF IN SITU COMPOSITES......Page 208
3. IN SITU HYBRID COMPOSITES......Page 215
3.1. CONCEPT AND MODEL OF IN SITU HYBRID COMPOSITES......Page 217
3.2. HYBRID EFFECT IN IN SITU HYBRID COMPOSITES......Page 218
3.2.2. Geometry......Page 219
3.3. TECHNIQUES FOR THE FABRICATION OF IN SITU HYBRID COMPOSITES......Page 221
4. NOMENCLATURE......Page 222
5. REFERENCES......Page 223
2. MOLECULAR DIMENSION OF THERMOTROPIC LIQUID CRYSTALLINE POLYMERS......Page 227
3. DYNAMICS OF LIQUID CRYSTALLINE POLYMERS......Page 231
4.1. THREE-REGION FLOW......Page 233
4.2. MELT VISCOSITY CURVES......Page 234
4.3. EFFECTS OF MOLECULAR WEIGHT......Page 237
4.4. EFFECTS OF TEMPERATURE......Page 240
4.5. EFFECTS OF GLASS FIBERS......Page 242
4.6. NEGATIVE NORMAL STRESS DIFFERENCE......Page 244
4.7. ELONGATIONAL VISCOSITY......Page 245
4.8. DIE SWELL......Page 246
5. PROCESSING OF THERMOTROPIC LIQUID CRYSTALLINE POLYMERS......Page 248
5.1.1. Morphology of Injection-Molded Parts......Page 249
5.1.2. Mechanical Properties of Injection-Molded Parts......Page 253
5.1.3. Weld Line Strength......Page 256
5.2. EXTRUSION AND COMPOUNDING......Page 258
5.3. FIBER SPINNING......Page 259
6. REFERENCES......Page 261
1. INTRODUCTION......Page 265
2.1.1. Side-Chain Type LCEs......Page 267
2.1.3. Combined LCEs......Page 270
2.2.2. Mechanical Properties......Page 272
2.2.3. Optical Properties......Page 274
2.3. LC THERMAL-PLASTIC ELASTOMERS [28]......Page 275
3. LIQUID SINGLE CRYSTAL ELASTOMER (LSCE), ANISOTROPIC NETWORK, AND GELS......Page 276
3.2. SYNTHESIS AND CHARACTERIZATION OF LSCE......Page 277
3.3. ANISOTROPIC NETWORK AND GELS......Page 278
3.4. COUPLING EFFECT BETWEEN MESOGENS AND POLYMER NETWORK......Page 279
3.5. MEMORY EFFECTS OF LC NETWORK......Page 280
3.6.2. LC Networks Consisting of Discotic Mesogens......Page 281
3.6.4. Non-LC Anisotropic Networks for Non-Linear Optics......Page 282
4. POTENTIAL APPLICATION OF LCE, ANISOTROPIC NETWORK, AND GELS......Page 283
5. REFERENCES......Page 284
1. INTRODUCTION......Page 288
2. SYNTHESIS AND PHASE BEHAVIOR OF TS-LCP......Page 289
2.1. EPOXY RIGID AND SEMIRIGID-ROD THERMOSETS......Page 290
2.2. CYANATE ESTER RIGID-ROD THERMOSETS......Page 295
2.3. BISMALEIMIDE RIGID-ROD THERMOSETS......Page 297
2.4. DIACRYLATE SEMIRIGID-ROD NETWORK......Page 299
2.5. BISACETYLENE RIGID-ROD NETWORK......Page 300
2.6. RIGID AND SEMIRIGID-ROD NETWORKS BASED ON HYBRID ORGANIC-INORGANIC DESIGNS......Page 301
3. REACTION KINETICS OF LC NETWORKS......Page 304
4. PHYSICAL PROPERTIES AND POTENTIAL APPLICATION......Page 305
5. REFERENCES......Page 306
2. LCP BACKGROUND......Page 310
2.2. CONTROLLED ORIENTATION OF LCP FILM......Page 313
3.1. ORIENTATION IN LCP FILM......Page 315
3.2. CALCULATION OF ORIENTATION ANGLES......Page 317
3.3. MULTILAYER COEXTRUSION......Page 323
4.1. APPLICATIONS AND PROPERTIES OF LCP TUBE......Page 324
4.3. MEDICAL APPLICATIONS OF LCP TUBING......Page 326
4.4. OTHER APPLICATIONS OF LCP TUBE......Page 329
5.1. THE LCP BLOWN FILM PROCESS......Page 331
5.2. LCP FILM IN PRINTED CIRCUIT BOARDS......Page 335
5.2.1. Test Results of the LCP Circuit Board......Page 336
5.3. LCP FILM IN HIGH BARRIER PACKAGING APPLICATIONS......Page 343
6. BLOW MOLDING LCPs AND APPLICATIONS......Page 348
7. LCP—THERMOPLASTIC BLENDS AND ALLOYS, PROCESSING, AND APPLICATIONS......Page 352
7.1. TENSILE PROPERTIES OF LCP BLENDS......Page 353
8. CONCLUSIONS......Page 354
9. REFERENCES......Page 355