دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Kazuaki Yazawa, Je-Hyeong Bahk, Ali Shakouri سری: ISBN (شابک) : 2020947143, 9789811218286 ناشر: World Scientific Publishing Co سال نشر: 2021 تعداد صفحات: 389 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 34 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Thermoelectric Energy Conversion Devices and Systems: 7 (Wspc Series In Advanced Integration And Packaging) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دستگاه ها و سیستم های تبدیل انرژی ترموالکتریک: 7 (سری Wspc در یکپارچه سازی و بسته بندی پیشرفته) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این خلاصه منحصربفرد بر عوامل کلیدی که عملکرد سیستمهای تبدیل انرژی ترموالکتریک را هدایت میکنند، تأکید میکند. پارامترهای مهم طراحی مانند انتقال حرارت در مرزهای سیستم، خواص مواد و عوامل شکل به دقت تجزیه و تحلیل و برای عملکرد از جمله مبادله هزینه-عملکرد بهینه شده است. نمونههای متعددی در مورد کاربردهای فنآوریهای ترموالکتریک، بهعنوان مثال، تولید برق، خنکسازی قطعات الکترونیکی و بازیابی گرمای اتلاف در دستگاههای پوشیدنی ارائه شده است. این جلد ضروری همچنین شامل یک بسته نرم افزار مدل سازی تعاملی است که بر روی پلت فرم nanoHUB (https://nanohub.org/) توسعه یافته است. متخصصان، محققان، دانشگاهیان، دانشجویان کارشناسی و کارشناسی ارشد قادر خواهند بود تأثیر خواص مواد و پارامترهای کلیدی طراحی را بر عملکرد کلی سیستم ترموالکتریک و همچنین اجرای در مقیاس بزرگ در جامعه مطالعه کنند.
This unique compendium emphasizes key factors driving the performance of thermoelectric energy conversion systems. Important design parameters such as heat transfer at the boundaries of the system, material properties, and form factors are carefully analyzed and optimized for performance including the cost-performance trade-off. Numbers of examples are provided on the applications of thermoelectric technologies, e.g., power generation, cooling of electronic components, and waste heat recovery in wearable devices. This must-have volume also includes an interactive modeling software package developed on the nanoHUB (https://nanohub.org/) platform. Professionals, researchers, academics, undergraduate and graduate students will be able to study the impact of material properties and key design parameters on the overall thermoelectric system performance as well as the large scale implementation in the society.
Contents Preface About the Authors Acknowledgments Chapter 1: Introduction 1.1 Discovery of Thermoelectricity 1.2 Thermodynamic Cycles 1.3 Refrigeration and the Coefficient of Performance 1.4 Thermodynamics of Thermoelectrics 1.4.1 Seebeck effect 1.4.2 Peltier effect 1.4.3 Thomson effect 1.5 Role of Heat Transfer in Thermoelectric Systems 1.6 Scalability of Thermoelectrics 1.7 Societal and Environmental Impact References Chapter 2: Thermal Energy Conversion in Photonics and Electronics 2.1 Energy-Friendly Cooling of Systems 2.2 Device Cooling 2.2.1 Cooling of photonics 2.3 On-demand/On-site Power Generation 2.3.1 RTG in space satellites 2.3.2 Radioisotope pacemaker 2.4 Scavenging Waste Heat 2.5 Thermoelectric Refrigeration 2.6 Thermal Control Equipment 2.7 Summary References Chapter 3: Heat Transfer in Thermoelectric System 3.1 Heat Conduction in Thermoelectrics 3.1.1 Heat spreading and contraction 3.1.2 Closed formula 3.2 Forced Convection Heat Exchange via Fluid 3.2.1 Case 1: Solid heat source and cooling by fluid 3.2.2 Case 2: Both fluids for hot and cold sides 3.2.3 Effective heat transfer coefficient 3.2.3.1 Fully developed laminar flow 3.2.3.2 Developing laminar, transitional, and turbulent flows 3.2.4 Effectiveness of thermoelectric integrated heat exchanger 3.2.5 Pump power and cooling efficiency 3.3 Radiation Heat Energy Exchange 3.4 Electrothermal Contacts and Parasitic Losses 3.4.1 Thermal bypasses 3.4.2 Thermal interfaces 3.4.3 Electrical parasitic losses 3.5 Passive Heat Transfer in Body Heat Energy Harvesting 3.5.1 Natural air convection from human body 3.5.2 Pin-fin enhancement 3.5.3 Add-on radiation and conduction 3.5.4 Effective heat transfer coefficient 3.5.5 Convective heat transfer enhancement 3.5.5.1 Wrist 3.5.5.2 Arm and elbow 3.6 Summary References Chapter 4: Refrigeration 4.1 Working Principle 4.2 Design Optimization for COP and Qmax 4.2.1 Analytical model 4.2.2 Relationship between COP and Qmax 4.3 Cost-Effective Design 4.3.1 Impact of heat sink performance 4.3.2 Impact of figure of merit 4.4 Cooling Limit of Infinitely Large Z 4.5 Thin Films 4.6 Multi-stage Thermoelectric Coolers 4.7 Scalability for a Working Temperature Range 4.8 Transient Cooling 4.9 Vapor Compression Refrigeration and Thermoelectrics 4.9.1 Gas refrigeration cycle 4.9.2 Vapor−liquid two-phase refrigeration cycle 4.9.3 CO2 trans-critical cycle and COP comparison 4.10 Thermoelectric Hybrid Cycle 4.11 Summary References Chapter 5: Power Generation 5.1 Working Principle 5.2 Design Optimization for Power Generation 5.2.1 Analytic model 5.2.2 Optimization for maximum power output 5.2.3 Efficiency analysis 5.3 Cost-Effective System Design 5.3.1 Key parameters 5.3.2 Thermoelectric module design 5.3.3 Net power and system cost 5.4 Energy Payback and Exergy Analysis 5.4.1 Energy payback with fluid pump power 5.4.2 Case study for waste heat recovery 5.4.3 Maximum power generation 5.4.4 Entropy generation in power generation process 5.4.5 Exergy flow in optimum system 5.5 Power Generation Limit with Infinitely Large Z 5.5.1 Asymmetric contacts 5.5.2 Curzon−Ahlborn limit 5.5.3 Efficiency and power outp 5.6 Multi-Segment Thermoelectric Generators 5.7 Impact of Temperature-Dependent Properties 5.8 Mechanical Reliability 5.9 Summary References Chapter 6: Industrial and Energy Applications of Thermoelectric Generation 6.1 Power Plant and Topping Cycle 6.1.1 Energy cost and fuel consumption 6.1.2 Topping cycle on ST 6.1.3 Model for topping cycle 6.1.4 Energy cost modeling 6.1.5 Optimization of thermoelectric 6.1.6 Optimization of Rankine cycle 6.1.7 Impact of ZT value 6.1.8 Parametric case study 6.1.8.1 Thermoelectric generator part 6.1.8.2 ST part 6.1.8.3 Power output of the combined system 6.1.8.4 Efficiency of the combined system 6.1.9 Energy economy analysis 6.2 Waste Heat Recovery in Industrial Processes 6.2.1 Glass melt process 6.2.2 Optimization for high-temperature waste heat recovery 6.3 Waste Heat Recovery from Vehicle Exhaust Gas 6.3.1 Vehicle exhaust heat recovery 6.4 Solar Energy Harvesting 6.4.1 Solar energy 6.4.2 Solar thermo-photovoltaic system 6.4.3 Solar thermal tower system 6.4.4 Solar trough system 6.4.5 Solar thermoelectric 6.4.6 Combined heat and power generation 6.4.7 Solar energy corrector — a design case 6.4.7.1 Fresnel lens 6.4.7.2 Solar tracker 6.4.7.3 Water pump 6.4.7.4 Cooler and the heat transfer 6.4.7.5 Electrical load 6.4.7.6 Experimental results 6.4.8 CHP system optimization 6.5 Summary References Chapter 7: Wearables and Internet of Things 7.1 Thermal Energy Harvesting for IoT 7.1.1 Case study 7.1.2 Thermal design 7.1.2.1 Type-1: Heat flow bypass 7.1.2.2 Type-2: Water flow bypass 7.1.3 Experimental apparatus 7.1.4 Analysis 7.1.4.1 Flow rate 7.1.4.2 Source temperature and leg length 7.1.4.3 Energy efficiency 7.1.4.4 Accuracy 7.1.4.5 Alternative ideal design 7.2 Human Body Heat Recovery 7.2.1 Review of previous study 7.2.2 Optimum design for body heat recovery 7.2.3 Parasitic loss consideration 7.2.4 Transient response and analysis 7.2.4.1 Numerical discretization of thermal diffusion 7.2.4.2 Multi-layer with contact resistance 7.2.5 Stationary and dynamic heat generation 7.2.6 Potential enhancement 7.2.7 Summary of body heat recovery 7.3 Flexible Thermoelectric Generators 7.3.1 Polymer-based thermoelectric 7.3.2 Folded film thermoelectric 7.3.3 Woven thermoelectric 7.3.3.1 Challenge in design of flexible thermoelectric modules 7.3.3.2 Performance of woven modules 7.3.3.3 Calculation 7.4 Thermoelectric Thermotherapy 7.5 Summary References Chapter 8: Materials and Device Characterization 8.1 Introduction 8.2 Characterization of Individual Material Properties 8.2.1 Seebeck coefficient 8.2.2 Electrical conductivity 8.2.2.1 Van der Pauw method 8.2.2.2 Collinear four-probe method 8.2.2.3 Non-contact eddy current method 8.2.3 Thermal conductivity 8.2.3.1 Comparative steady-state method 8.2.3.2 Laser flash method 8.2.3.3 3-ω method 8.2.3.4 Time domain thermoreflectance 8.3 Micro/Nano-scale Thermal Characterization Techniques 8.3.1 Micro-Raman thermography 8.3.2 Atomic force microscopy-based thermography 8.3.3 Near-field scanning optical microscopy 8.3.4 Infrared thermal imaging 8.3.5 Thermoreflectance imaging 8.4 Harman Method 8.5 Impedance Spectroscopy 8.6 Summary References Chapter 9: Simulation Tools 9.1 Introduction 9.2 Thin-film and Multi-element TE Device Simulator (THERMO Tool) 9.2.1 Simulation of thin-film TE devices 9.2.2 Simulation of multi-element TE modules 9.2.3 Simulation of double-segmented elements 9.3 Advanced Thermoelectric Power Generation Simulator (ADVTE tool) 9.3.1 Finite element model for TE elements 9.3.2 Evaluation of TE performance 9.4 System Performance Optimization and Cost Analysis Simulator (TEDEV Tool) 9.4.1 System performance 9.4.2 Cost analysis 9.5 Material Properties Simulator (BTEsolver Tool) 9.5.1 Linearized Boltzmann transport equations 9.5.2 Band structure, density of states, and carrier concentration 9.5.3 Bipolar transport 9.5.4 Scattering characteristics 9.5.5 Doping optimization 9.5.6 Differential conductivity analysis 9.5.7 Electron energy filtering analysis 9.6 Online Course 9.7 Summary References Chapter 10: Future of Technology 10.1 Energiology 10.2 Distributed Power Generation and Scalability 10.2.1 Scaling to smaller dimensions 10.2.2 Off-grid power generation 10.2.3 Hybrid renewables and heat pumps for dispatchability 10.3 Engineering the ZT 10.3.1 Figure of merit 10.3.2 Thermoelectric energy conversion 10.3.3 Trade-off between electrical conductivity and the Seebeck coefficient 10.3.4 Optimum band gap of thermoelectric material 10.3.5 Electrical properties of low-dimensional and 2D material thermoelectrics 10.3.6 What can we learn from nanoelectronics and nanophotonics in energy applications? 10.3.7 Polymer/organic thermoelectrics 10.4 Role of Advanced Computing Power 10.5 Material Cost/Efficiency Trade-Off 10.6 Summary References Nomenclature Index