ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Thermodynamics: Fundamentals and Engineering Applications

دانلود کتاب ترمودینامیک: مبانی و کاربردهای مهندسی

Thermodynamics: Fundamentals and Engineering Applications

مشخصات کتاب

Thermodynamics: Fundamentals and Engineering Applications

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 0521862736, 9780521862738 
ناشر: Cambridge University Press 
سال نشر: 2018 
تعداد صفحات: 421 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 37 مگابایت 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 17


در صورت تبدیل فایل کتاب Thermodynamics: Fundamentals and Engineering Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ترمودینامیک: مبانی و کاربردهای مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ترمودینامیک: مبانی و کاربردهای مهندسی

این متن مختصر یک درمان اساسی از ترمودینامیک و بحث در مورد اصول اساسی مبتنی بر توصیف شهودی رفتار میکروسکوپی ماده را ارائه می‌کند. این ارائه با هدف طیف وسیعی از دوره‌های مهندسی مکانیک و هوافضا، مبانی معتبر در سطح ماکروسکوپی را در رابطه با آنچه در سطح میکروسکوپی اتفاق می‌افتد، با تکیه بر توضیحات بصری و بصری که با موارد جذاب ارائه می‌شود، توضیح می‌دهد. این متن با نمونه‌های موردی و واقعی مرتبط با فناوری‌های تبدیل انرژی‌های تجدیدپذیر فعلی و آینده و دو برنامه معروف مورد استفاده برای محاسبات ترمودینامیکی، FluidProp و StanJan، تجربه یادگیری غنی و جذابی را برای دانش‌آموزان فراهم می‌کند.


توضیحاتی درمورد کتاب به خارجی

This concise text provides an essential treatment of thermodynamics and a discussion of the basic principles built on an intuitive description of the microscopic behavior of matter. Aimed at a range of courses in mechanical and aerospace engineering, the presentation explains the foundations valid at the macroscopic level in relation to what happens at the microscopic level, relying on intuitive and visual explanations which are presented with engaging cases. With ad hoc, real-word examples related also to current and future renewable energy conversion technologies and two well-known programs used for thermodynamic calculations, FluidProp and StanJan, this text provides students with a rich and engaging learning experience.



فهرست مطالب

Contents
Preface
Remembering Bill Reynolds
Acknowledgments
1 Introduction
	1.1 What is Thermodynamics?
		Basic principles
		Microscopic and macroscopic views
		Entropy
		Our approach
	1.2 Accounting for the Basic Quantities
		Production accounting
		Rate-basis production accounting
		Basic principles
		Alternative balance equations
	1.3 Analysis Methodology
		How to be systematic
		Make your analysis readable!
	1.4 Concepts from Mechanics
		Conservation of momentum
		Mass
		Force
		Newton’s law
		Gravitation
		Inertial frames
		Momentum analysis methodology
		Example: being systematic
	1.5 Mechanical Concepts of Energy
		Work
		Kinetic energy
		Potential energy
		Power
	1.6 Dimensions and Unit Systems
		Eventually you will need numbers
		The SI unit system
		Primary quantities
		Standards for the primary quantities
		The SI mass unit
		Secondary quantities
		Role of Newton’s law
		Non-uniqueness of SI
		US Customary FLT System
		USGC system
		How to deal with with gc
		Alternative systems
		Multiples and prefixes
		Unit conversion
		Example: unit conversion
		Example: determining unit equivalents
	Exercises
2 Energy
	2.1 Concept of Energy
		The Energy Hypothesis
	2.2 Microscopic Energy Modes
		Translational energy
		Rotational energy
		Vibrational energy
		Lattice energy
		Electronic bonding energy
		Nuclear bonding energy
	2.3 Internal Energy
	2.4 Total Energy
	2.5 Energy Transfer as Work
		Macroscopic work
		Work done by an expanding gas
		Example: isobaric expansion in a piston–cylinder
		Example: expansion in a piston– cylinder with prescribed pressure variation
		Work for a polytropic process
	2.6 Energy Transfer as Heat
		Heat and internal energy
		Temperature
		Heat transfer mechanisms
		Adiabatic boundaries
		Heat exchangers
		Heat, work, and entropy
		Vestiges of caloric theory
	2.7 Energy Balances
		Energy balance methodology
		Importance of system boundaries
		Sign convention
		Notation for energy accumulation
		First Law of Thermodynamics
	2.8 Examples
		Gas compression
		Heat pump
		Detailed heat pump cycle analysis
	Exercises
3 Properties and States
	3.1 Concepts of Property and State
		Properties
		States
		Intensive and extensive properties
		Thermodynamic properties and state
		Equilibrium states
		Fixing a thermodynamic state
	3.2 Pressure
		Pressure at a solid boundary
		Pressure within a fluid
		Pressure is isotropic
		Pressure in a fluid at rest is uniform in horizontal planes
		Hydrostatic pressure
		Atmospheric pressure
		Gauge and absolute pressure
	3.3 Temperature
		Temperature concept
		Empirical temperature scales
		Constant-volume gas thermometer
		Absolute temperature
	3.4 The State Principle
		Changing the thermodynamic state
		Reversible work modes
		The State Principle
		Application to a simple compressible substance
		Application to a ferrofluid
	3.5 States of a Simple Compressible Substance
		Liquid and vapor states
		Saturation pressure and temperature, and normal boiling point
		Critical point
		Saturation lines, vapor dome
		Solid and liquid states
		Triple point
		P−v −T surface
		T−P phase diagram
		Multiple solid phases
	3.6 Thermodynamic Property Data
		Internal energy
		Enthalpy
		Saturation tables
		Properties in the vapor–liquid equilibrium region
		Example: properties for a state in vapor–liquid equilibrium
		Example: properties for a superheated state
		Thermodynamic property charts
		Properties software
	3.7 Derivative Properties
		Isobaric compressibility
		Isothermal compressibility
		Specific heat at constant volume
		Specific heat at constant pressure
		Specific heat ratio
	3.8 The Ideal (or Perfect) Gas
		Definition
		Conditions for ideal gas behavior
		Energy of an ideal gas
		Enthalpy for an ideal gas
		Specific heats for an ideal gas
		Air as an ideal gas
	3.9 A Microscopic Model for the Ideal Gas
		Pressure in an ideal gas
		Temperature of an ideal gas
		Internal energy of a monatomic ideal gas
		Enthalpy of a monatomic ideal gas
		Specific heats of a monatomic ideal gas
	3.10 Extensions to Polyatomic Ideal Gases
		Equipartition model
		Diatomic molecules
		Complex molecules
	Exercises
4 Control Volume Energy Analysis
	4.1 Control Mass and Control Volume
		Control mass
		Control volume
	4.2 Example of Flow System Analysis: Tank Charging
		The system
		Control volume and control mass
		Mass balance on the control mass
		Mass balance on the control volume
		Energy balance on the control mass
		Energy balance on the control volume
		Enthalpy and mass-associated energy transfer
		Energy accumulation in the control volume
	4.3 Generalized Control Volume Energy Analysis
		The device
		The control volume
		The control mass
		Mass balance on the control mass
		Mass balance, rate basis
		Energy balance on the control volume
		Flow work
		Enthalpy and mass-associated energy transfer
		Enthalpy does not accumulate!
		Energy balance, rate basis
		Steady-state assumption
		Multiple inputs and outputs
	4.4 General Methodology for Energy Analysis
		Importance of system boundaries
		Unsteady-state balances
	4.5 Example: Supersonic Nozzle
		Idealizations
		Mass balance
		Energy balance
		Energy balance per unit mass
		Further simplification
	4.6 Example: Hydraulic Turbine
		Idealizations
		Mass balance
		Energy balance
		Control volume energy change
		Friction effects
		Power output and design calculations
	4.7 Example of System Analysis: Heat Pump
		The system
		Operating conditions
		Common idealizations
		Heat exchanger process model
		Compressor analysis
		Condenser analysis
		Coefficient of performance
		Sizing the system
		Valve analysis
		Evaporator analysis
		Overall energy balance check
	4.8 Example with Unsteady and Moving Control Volume: Rocket
		Relevant velocities
		Mass balance
		Mass-associated energy transfer
		Forces and energy transfers as work
		Energy balance
	4.9 Example with Distorting Control Volume: IC Engine
		Mass balance
		Mass-associated energy transfer
		Forces and energy transfers as work
		Energy balance
		Differential equations for an adiabatic system
		Partial solution for the adiabatic system
	Exercises
5 Entropy and the Second Law
	5.1 The Concept of Entropy
		Energy balances are insensitive to direction
		Another principle is needed
		Entropy and microscopic randomness
		Entropy and microscopic uncertainty
		Entropy is extensive
		Entropy change in an isolated system
		Production
		Entropy production
		Heat and entropy transfer
		Work and entropy transfer
		Reversible process
	5.2 The Entropy Hypothesis
	5.3 Entropy Change in a Reversible Adiabatic Process
	5.4 Entropy of a Simple Compressible Substance
		Entropy and state
		Entropy derivatives
		Entropy of a two-part system
		Entropy change under isolation
		Condition for thermal equilibrium
		Approach to thermal equilibrium
		Condition for mechanical equilibrium
		Approach to mechanical equilibrium
		Reversible adiabatic expansion
		Identification of X using the ideal gas
		The Gibbs equation
		Units of entropy
		Integration of the Gibbs equation
		Example: entropy change for evaporation
		Example: entropy differences for an ideal gas
		Entropy datum states
		Thermodynamic definitions of temperature and pressure
	5.5 Entropy Transfer with Heat
		Entropy transfer for a reversible process
		Where are we headed?
		Thermal energy reservoir
		Mechanical energy reservoir
		Entropy production by heat transfer
		Reversible heat transfer
		Entropy transfer as heat
		Rate of entropy transfer with heat
	5.6 Example Uses of Control Mass Entropy Balances
		Carnot efficiency for energy conversion
		Example: Solar powered refrigerator
		Adiabatic compression
	5.7 Example Uses of Control Volume Entropy Balances
		Methane liquefaction
		Available energy
		Turbine analysis: turbine isentropic efficiency
		Compressor analysis: compressor isentropic efficiency
	5.8 Entropy in Non-equilibrium States
		Entropy
		A helpful analogy
		Quantum states
		Quantum states and entropy
		Entropy and microstate probabilities
	Exercises
6 Thermodynamics of State
	6.1 Equation of State for the Ideal Gas
		Definition
		Other forms
		Temperature of an ideal gas
		Internal energy and temperature
		Enthalpy and temperature
		Entropy
		Temperature dependence
		Reduced pressure and volume
		Isentropic process analysis
		Example: use of the ideal gas reduced pressure
		Constant specific heat (or polytropic) model
		Example: isentropic compression of air
		Polytropic process
		Reference (or datum) state
	6.2 Thermodynamic Functions and Property Relations
		Helmholtz energy
		Gibbs energy
		Maxwell relations
	6.3 Properties from P = P(v,T) and cPIG(or v)
		Internal energy, entropy, and enthalpy
		Isochoric and isobaric specific heat and their ratio
		Speed of sound
		Example: the derivation of the speed of sound
		Isentropic, isobaric, and isothermal compressibility
		Additional partial derivatives and integral
		Example: the van der Waals equation of state
	6.4 The Principle of Corresponding States
	6.5 Some Other Useful Relations
		Example: derivation of thermodynamic relations
	6.6 Properties from Fundamental Equations
	6.7 Virial Equation of State for Gases
		Example: computation of B from experimental data
	6.8 Process Fluids and their Characteristics
	6.9 Complex Equations of State
		Cubic equations of state
		Multiparameter volumetric equations of state
		Helmholtz equations of state
		Equations of state from statistical thermodynamics, or “molecular” equations of state
	6.10 Ideal Gas Heat Capacity
		Example: ideal gas heat capacity from speed of sound measurements
	6.11 Vapor–Liquid Equilibrium
		The saturation line and fugacity
		Example: saturation pressure at a given temperature using the van de Waals equation of state
		Vapor–liquid equilibrium in charts
		Phase rule for pure substances
		Clapeyron equation
		Example: latent heat of vaporization from P–v–T data
	6.12 Stability for Simple Compressible Fluids
	6.13 The Choice of a Thermodynamic Model
	Exercises
7 Energy Conversion Systems
	7.1 Analysis of Thermodynamic Systems
	7.2 The Rankine Cycle
	7.3 Vapor Power Plants
		Superheating and reheating
		Supercritical cycle
		Deaerator, regenerator, and economizer
		Example: efficiency of a Rankine cycle power plant
		Organic Rankine cycle turbogenerator
		Example: efficiency and power of an ORC power plant
	7.4 Refrigeration
		Vapor-compression refrigeration
		Example: refrigeration plant enhanced by a turbocompressor
		Absorption refrigeration
	7.5 The Brayton Cycle
	7.6 Gas Turbines
		Regeneration
		Intercooling
		Reheating
		Ultra-efficient gas turbine
		Closed Brayton cycle gas turbine
	7.7 Other Gas Power Cycles and Engines
		Otto cycle
		Diesel cycle
		Stirling cycle
	7.8 Fuel Cells
	7.9 Combined, Cogenerating, and Binary Cycle Power Plants
	7.10 Thermodynamic Design, Sustainability, and Other Criteria
	Exercises
8 Thermodynamic Properties of Multicomponent Fluids
	8.1 Simple Mixtures
	8.2 Extension of Thermodynamic Relations to Mixtures
	8.3 The Perfect Gas Mixture
		Example: entropy change of mixing of an ideal gas mixture
		Example: condensing home boiler
	8.4 Partial Molar Properties
	8.5 Vapor–Liquid Equilibrium
		Example: Clapeyron equation for mixtures
		Gibbs–Duhem equation
		Phase rule for mixtures
		Example: fixing the state of a binary mixture
	8.6 The Ideal Solution
		Vapor–liquid equilibrium of an ideal mixture
		Example: P-xy chart using Raoult’s law
	8.7 Fugacity and Fugacity Coefficient
		Equilibrium using the fugacity and fugacity coefficient functions
		Example: fugacity of a species in a mixture of perfect gases
	8.8 Activity Coefficient Models for the Liquid Phase
		Activity coefficient
		Example: activity coefficients from experimental data
		Margules equations
	8.9 Dilute Solution
		Example: concentrations with Henry’s constant
		Freezing point depression and boiling point elevation in binary solutions
		Example: ethylene glycol and methanol as antifreeze
	8.10 A Complete and Consistent Thermodynamic Model
		Thermodynamically correct mixing rules
		Property calculations
		VLE calculations at given T and/or P
	8.11 Azeotropes
	8.12 Concluding Remarks
	Exercises
9 Exergy Analysis
	9.1 What for?
	9.2 Available Energy
		Example: Improving the use of energy in a chemical process
		Example: Geothermally driven cooling system
	9.3 Exergy
		Exergy of a system
		Specific, physical, kinetic, potential, and flow exergy
	9.4 Control Volume Exergy Analysis
		Steady-state exergy balance
		Temperature of the boundary lower than the temperature of the environment
		Example: Valve
		Example: Heat exchanger
		Example: Compressor
		Causes of exergy losses
	9.5 A Useful Thermodynamic Efficiency Based on Exergy
		Example: Domestic heating
		Example: Heat exchanger
		Example: Turbine
		Example: Mixer or contact heat exchanger
	9.6 Example: Exergy Analysis of a Simple Rankine Cycle Power Plant
	9.7 Concluding Remarks
	Exercises
10 Thermodynamics of Reacting Mixtures
	10.1 Some Concepts and Terms
	10.2 Fuel Analysis and Product Composition
		Example: Fuel, AFR, and chemical equation from flue gas composition
	10.3 Standardized Energy and Enthalpy
		Enthalpy of formation
	10.4 Heat of Reaction, Heating Values
		Example: LHV calculation
		Example: Temperature effects
		Example: Adiabatic flame temperature
		Example: Nonstandard reactant states
		Example: Excess air
	10.5 Absolute Entropy and the Third Law of Thermodynamics
		Example: A second-law application
	10.6 Chemical Equilibrium
		Simple reactive mixture
		Equations of reaction equilibrium
		Equilibrium reactions in a perfect-gas mixture. The definition of the equilibrium constant
		Example: Equilibrium constant calculation
		Example: Equilibrium composition
		Example: Effect of pressure
		Example: Effect of temperature
		Van’t Hoff equation
		Example: Fuel cell
	10.7 The Element Potential Method
		The basic theory of element potentials
		Element potentials in hand calculations
	Exercises
APPENDICES
A Thermodynamic Properties of Fluids
	A.1 Values of Several Molar Properties for Some Common Fluids
	A.2 Low-density Thermodynamic Properties of Air
	A.3 Water
	A.4 Refrigerant R134a
	A.5 Methane
	A.6 Propane
	A.7 Ammonia
	A.8 Oxygen
	A.9 Carbon Dioxide
	A.10 Siloxane MDM
	A.11 Alkali Metal Potassium
	A.12 The Complete iPRSV Thermodynamic Model
	A.13 Extension of the iPRSV Model to Mixtures with the Wong–Sandler Mixing Rules
B Mathematical Relations between Partial Derivatives
C Numerical Schemes for Saturation Point and Flash Calculations
	C.1 Numerical Scheme for Bubble and Dew Point Calculations
	C.2 Numerical Scheme for Isothermal PT-flash Calculations
D Chemical Equilibrium
	D.1 Logarithms to the Base 10 of the Equilibrium Constant K
	D.2 STANJAN
		D.2.1 Dual problem
		D.2.2 Detail of the numerical solution
	D.3 Independent Atoms, Basis Species, and Matrix Conditioning
	D.4 Initialization
Notation
Index
E The Method of Lagrange Multipliers




نظرات کاربران