دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: William C. Reynolds, Piero Colonna سری: ISBN (شابک) : 0521862736, 9780521862738 ناشر: Cambridge University Press سال نشر: 2018 تعداد صفحات: 421 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 مگابایت
در صورت تبدیل فایل کتاب Thermodynamics: Fundamentals and Engineering Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترمودینامیک: مبانی و کاربردهای مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این متن مختصر یک درمان اساسی از ترمودینامیک و بحث در مورد اصول اساسی مبتنی بر توصیف شهودی رفتار میکروسکوپی ماده را ارائه میکند. این ارائه با هدف طیف وسیعی از دورههای مهندسی مکانیک و هوافضا، مبانی معتبر در سطح ماکروسکوپی را در رابطه با آنچه در سطح میکروسکوپی اتفاق میافتد، با تکیه بر توضیحات بصری و بصری که با موارد جذاب ارائه میشود، توضیح میدهد. این متن با نمونههای موردی و واقعی مرتبط با فناوریهای تبدیل انرژیهای تجدیدپذیر فعلی و آینده و دو برنامه معروف مورد استفاده برای محاسبات ترمودینامیکی، FluidProp و StanJan، تجربه یادگیری غنی و جذابی را برای دانشآموزان فراهم میکند.
This concise text provides an essential treatment of thermodynamics and a discussion of the basic principles built on an intuitive description of the microscopic behavior of matter. Aimed at a range of courses in mechanical and aerospace engineering, the presentation explains the foundations valid at the macroscopic level in relation to what happens at the microscopic level, relying on intuitive and visual explanations which are presented with engaging cases. With ad hoc, real-word examples related also to current and future renewable energy conversion technologies and two well-known programs used for thermodynamic calculations, FluidProp and StanJan, this text provides students with a rich and engaging learning experience.
Contents Preface Remembering Bill Reynolds Acknowledgments 1 Introduction 1.1 What is Thermodynamics? Basic principles Microscopic and macroscopic views Entropy Our approach 1.2 Accounting for the Basic Quantities Production accounting Rate-basis production accounting Basic principles Alternative balance equations 1.3 Analysis Methodology How to be systematic Make your analysis readable! 1.4 Concepts from Mechanics Conservation of momentum Mass Force Newton’s law Gravitation Inertial frames Momentum analysis methodology Example: being systematic 1.5 Mechanical Concepts of Energy Work Kinetic energy Potential energy Power 1.6 Dimensions and Unit Systems Eventually you will need numbers The SI unit system Primary quantities Standards for the primary quantities The SI mass unit Secondary quantities Role of Newton’s law Non-uniqueness of SI US Customary FLT System USGC system How to deal with with gc Alternative systems Multiples and prefixes Unit conversion Example: unit conversion Example: determining unit equivalents Exercises 2 Energy 2.1 Concept of Energy The Energy Hypothesis 2.2 Microscopic Energy Modes Translational energy Rotational energy Vibrational energy Lattice energy Electronic bonding energy Nuclear bonding energy 2.3 Internal Energy 2.4 Total Energy 2.5 Energy Transfer as Work Macroscopic work Work done by an expanding gas Example: isobaric expansion in a piston–cylinder Example: expansion in a piston– cylinder with prescribed pressure variation Work for a polytropic process 2.6 Energy Transfer as Heat Heat and internal energy Temperature Heat transfer mechanisms Adiabatic boundaries Heat exchangers Heat, work, and entropy Vestiges of caloric theory 2.7 Energy Balances Energy balance methodology Importance of system boundaries Sign convention Notation for energy accumulation First Law of Thermodynamics 2.8 Examples Gas compression Heat pump Detailed heat pump cycle analysis Exercises 3 Properties and States 3.1 Concepts of Property and State Properties States Intensive and extensive properties Thermodynamic properties and state Equilibrium states Fixing a thermodynamic state 3.2 Pressure Pressure at a solid boundary Pressure within a fluid Pressure is isotropic Pressure in a fluid at rest is uniform in horizontal planes Hydrostatic pressure Atmospheric pressure Gauge and absolute pressure 3.3 Temperature Temperature concept Empirical temperature scales Constant-volume gas thermometer Absolute temperature 3.4 The State Principle Changing the thermodynamic state Reversible work modes The State Principle Application to a simple compressible substance Application to a ferrofluid 3.5 States of a Simple Compressible Substance Liquid and vapor states Saturation pressure and temperature, and normal boiling point Critical point Saturation lines, vapor dome Solid and liquid states Triple point P−v −T surface T−P phase diagram Multiple solid phases 3.6 Thermodynamic Property Data Internal energy Enthalpy Saturation tables Properties in the vapor–liquid equilibrium region Example: properties for a state in vapor–liquid equilibrium Example: properties for a superheated state Thermodynamic property charts Properties software 3.7 Derivative Properties Isobaric compressibility Isothermal compressibility Specific heat at constant volume Specific heat at constant pressure Specific heat ratio 3.8 The Ideal (or Perfect) Gas Definition Conditions for ideal gas behavior Energy of an ideal gas Enthalpy for an ideal gas Specific heats for an ideal gas Air as an ideal gas 3.9 A Microscopic Model for the Ideal Gas Pressure in an ideal gas Temperature of an ideal gas Internal energy of a monatomic ideal gas Enthalpy of a monatomic ideal gas Specific heats of a monatomic ideal gas 3.10 Extensions to Polyatomic Ideal Gases Equipartition model Diatomic molecules Complex molecules Exercises 4 Control Volume Energy Analysis 4.1 Control Mass and Control Volume Control mass Control volume 4.2 Example of Flow System Analysis: Tank Charging The system Control volume and control mass Mass balance on the control mass Mass balance on the control volume Energy balance on the control mass Energy balance on the control volume Enthalpy and mass-associated energy transfer Energy accumulation in the control volume 4.3 Generalized Control Volume Energy Analysis The device The control volume The control mass Mass balance on the control mass Mass balance, rate basis Energy balance on the control volume Flow work Enthalpy and mass-associated energy transfer Enthalpy does not accumulate! Energy balance, rate basis Steady-state assumption Multiple inputs and outputs 4.4 General Methodology for Energy Analysis Importance of system boundaries Unsteady-state balances 4.5 Example: Supersonic Nozzle Idealizations Mass balance Energy balance Energy balance per unit mass Further simplification 4.6 Example: Hydraulic Turbine Idealizations Mass balance Energy balance Control volume energy change Friction effects Power output and design calculations 4.7 Example of System Analysis: Heat Pump The system Operating conditions Common idealizations Heat exchanger process model Compressor analysis Condenser analysis Coefficient of performance Sizing the system Valve analysis Evaporator analysis Overall energy balance check 4.8 Example with Unsteady and Moving Control Volume: Rocket Relevant velocities Mass balance Mass-associated energy transfer Forces and energy transfers as work Energy balance 4.9 Example with Distorting Control Volume: IC Engine Mass balance Mass-associated energy transfer Forces and energy transfers as work Energy balance Differential equations for an adiabatic system Partial solution for the adiabatic system Exercises 5 Entropy and the Second Law 5.1 The Concept of Entropy Energy balances are insensitive to direction Another principle is needed Entropy and microscopic randomness Entropy and microscopic uncertainty Entropy is extensive Entropy change in an isolated system Production Entropy production Heat and entropy transfer Work and entropy transfer Reversible process 5.2 The Entropy Hypothesis 5.3 Entropy Change in a Reversible Adiabatic Process 5.4 Entropy of a Simple Compressible Substance Entropy and state Entropy derivatives Entropy of a two-part system Entropy change under isolation Condition for thermal equilibrium Approach to thermal equilibrium Condition for mechanical equilibrium Approach to mechanical equilibrium Reversible adiabatic expansion Identification of X using the ideal gas The Gibbs equation Units of entropy Integration of the Gibbs equation Example: entropy change for evaporation Example: entropy differences for an ideal gas Entropy datum states Thermodynamic definitions of temperature and pressure 5.5 Entropy Transfer with Heat Entropy transfer for a reversible process Where are we headed? Thermal energy reservoir Mechanical energy reservoir Entropy production by heat transfer Reversible heat transfer Entropy transfer as heat Rate of entropy transfer with heat 5.6 Example Uses of Control Mass Entropy Balances Carnot efficiency for energy conversion Example: Solar powered refrigerator Adiabatic compression 5.7 Example Uses of Control Volume Entropy Balances Methane liquefaction Available energy Turbine analysis: turbine isentropic efficiency Compressor analysis: compressor isentropic efficiency 5.8 Entropy in Non-equilibrium States Entropy A helpful analogy Quantum states Quantum states and entropy Entropy and microstate probabilities Exercises 6 Thermodynamics of State 6.1 Equation of State for the Ideal Gas Definition Other forms Temperature of an ideal gas Internal energy and temperature Enthalpy and temperature Entropy Temperature dependence Reduced pressure and volume Isentropic process analysis Example: use of the ideal gas reduced pressure Constant specific heat (or polytropic) model Example: isentropic compression of air Polytropic process Reference (or datum) state 6.2 Thermodynamic Functions and Property Relations Helmholtz energy Gibbs energy Maxwell relations 6.3 Properties from P = P(v,T) and cPIG(or v) Internal energy, entropy, and enthalpy Isochoric and isobaric specific heat and their ratio Speed of sound Example: the derivation of the speed of sound Isentropic, isobaric, and isothermal compressibility Additional partial derivatives and integral Example: the van der Waals equation of state 6.4 The Principle of Corresponding States 6.5 Some Other Useful Relations Example: derivation of thermodynamic relations 6.6 Properties from Fundamental Equations 6.7 Virial Equation of State for Gases Example: computation of B from experimental data 6.8 Process Fluids and their Characteristics 6.9 Complex Equations of State Cubic equations of state Multiparameter volumetric equations of state Helmholtz equations of state Equations of state from statistical thermodynamics, or “molecular” equations of state 6.10 Ideal Gas Heat Capacity Example: ideal gas heat capacity from speed of sound measurements 6.11 Vapor–Liquid Equilibrium The saturation line and fugacity Example: saturation pressure at a given temperature using the van de Waals equation of state Vapor–liquid equilibrium in charts Phase rule for pure substances Clapeyron equation Example: latent heat of vaporization from P–v–T data 6.12 Stability for Simple Compressible Fluids 6.13 The Choice of a Thermodynamic Model Exercises 7 Energy Conversion Systems 7.1 Analysis of Thermodynamic Systems 7.2 The Rankine Cycle 7.3 Vapor Power Plants Superheating and reheating Supercritical cycle Deaerator, regenerator, and economizer Example: efficiency of a Rankine cycle power plant Organic Rankine cycle turbogenerator Example: efficiency and power of an ORC power plant 7.4 Refrigeration Vapor-compression refrigeration Example: refrigeration plant enhanced by a turbocompressor Absorption refrigeration 7.5 The Brayton Cycle 7.6 Gas Turbines Regeneration Intercooling Reheating Ultra-efficient gas turbine Closed Brayton cycle gas turbine 7.7 Other Gas Power Cycles and Engines Otto cycle Diesel cycle Stirling cycle 7.8 Fuel Cells 7.9 Combined, Cogenerating, and Binary Cycle Power Plants 7.10 Thermodynamic Design, Sustainability, and Other Criteria Exercises 8 Thermodynamic Properties of Multicomponent Fluids 8.1 Simple Mixtures 8.2 Extension of Thermodynamic Relations to Mixtures 8.3 The Perfect Gas Mixture Example: entropy change of mixing of an ideal gas mixture Example: condensing home boiler 8.4 Partial Molar Properties 8.5 Vapor–Liquid Equilibrium Example: Clapeyron equation for mixtures Gibbs–Duhem equation Phase rule for mixtures Example: fixing the state of a binary mixture 8.6 The Ideal Solution Vapor–liquid equilibrium of an ideal mixture Example: P-xy chart using Raoult’s law 8.7 Fugacity and Fugacity Coefficient Equilibrium using the fugacity and fugacity coefficient functions Example: fugacity of a species in a mixture of perfect gases 8.8 Activity Coefficient Models for the Liquid Phase Activity coefficient Example: activity coefficients from experimental data Margules equations 8.9 Dilute Solution Example: concentrations with Henry’s constant Freezing point depression and boiling point elevation in binary solutions Example: ethylene glycol and methanol as antifreeze 8.10 A Complete and Consistent Thermodynamic Model Thermodynamically correct mixing rules Property calculations VLE calculations at given T and/or P 8.11 Azeotropes 8.12 Concluding Remarks Exercises 9 Exergy Analysis 9.1 What for? 9.2 Available Energy Example: Improving the use of energy in a chemical process Example: Geothermally driven cooling system 9.3 Exergy Exergy of a system Specific, physical, kinetic, potential, and flow exergy 9.4 Control Volume Exergy Analysis Steady-state exergy balance Temperature of the boundary lower than the temperature of the environment Example: Valve Example: Heat exchanger Example: Compressor Causes of exergy losses 9.5 A Useful Thermodynamic Efficiency Based on Exergy Example: Domestic heating Example: Heat exchanger Example: Turbine Example: Mixer or contact heat exchanger 9.6 Example: Exergy Analysis of a Simple Rankine Cycle Power Plant 9.7 Concluding Remarks Exercises 10 Thermodynamics of Reacting Mixtures 10.1 Some Concepts and Terms 10.2 Fuel Analysis and Product Composition Example: Fuel, AFR, and chemical equation from flue gas composition 10.3 Standardized Energy and Enthalpy Enthalpy of formation 10.4 Heat of Reaction, Heating Values Example: LHV calculation Example: Temperature effects Example: Adiabatic flame temperature Example: Nonstandard reactant states Example: Excess air 10.5 Absolute Entropy and the Third Law of Thermodynamics Example: A second-law application 10.6 Chemical Equilibrium Simple reactive mixture Equations of reaction equilibrium Equilibrium reactions in a perfect-gas mixture. The definition of the equilibrium constant Example: Equilibrium constant calculation Example: Equilibrium composition Example: Effect of pressure Example: Effect of temperature Van’t Hoff equation Example: Fuel cell 10.7 The Element Potential Method The basic theory of element potentials Element potentials in hand calculations Exercises APPENDICES A Thermodynamic Properties of Fluids A.1 Values of Several Molar Properties for Some Common Fluids A.2 Low-density Thermodynamic Properties of Air A.3 Water A.4 Refrigerant R134a A.5 Methane A.6 Propane A.7 Ammonia A.8 Oxygen A.9 Carbon Dioxide A.10 Siloxane MDM A.11 Alkali Metal Potassium A.12 The Complete iPRSV Thermodynamic Model A.13 Extension of the iPRSV Model to Mixtures with the Wong–Sandler Mixing Rules B Mathematical Relations between Partial Derivatives C Numerical Schemes for Saturation Point and Flash Calculations C.1 Numerical Scheme for Bubble and Dew Point Calculations C.2 Numerical Scheme for Isothermal PT-flash Calculations D Chemical Equilibrium D.1 Logarithms to the Base 10 of the Equilibrium Constant K D.2 STANJAN D.2.1 Dual problem D.2.2 Detail of the numerical solution D.3 Independent Atoms, Basis Species, and Matrix Conditioning D.4 Initialization Notation Index E The Method of Lagrange Multipliers