ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Thermodynamics: An Engineering Approach

دانلود کتاب ترمودینامیک: رویکرد مهندسی

Thermodynamics: An Engineering Approach

مشخصات کتاب

Thermodynamics: An Engineering Approach

ویرایش: 9 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 1259822672, 9781259822674 
ناشر: McGraw-Hill Education 
سال نشر: 2018 
تعداد صفحات: 1094 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 51 مگابایت 

قیمت کتاب (تومان) : 36,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Thermodynamics: An Engineering Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ترمودینامیک: رویکرد مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ترمودینامیک: رویکرد مهندسی

موضوع ترمودینامیک با انرژی سروکار دارد و از دیرباز بخشی ضروری از برنامه های درسی مهندسی در سراسر جهان بوده است. محدوده کاربرد گسترده آن از موجودات میکروسکوپی گرفته تا لوازم خانگی معمولی، وسایل نقلیه حمل و نقل، سیستم های تولید برق و حتی فلسفه است. این کتاب مقدماتی حاوی مطالب کافی برای دو درس متوالی در ترمودینامیک است و فرض بر این است که دانش‌آموزان دارای پیش‌زمینه کافی در حساب دیفرانسیل و انتگرال و فیزیک هستند. از ترمودینامیک و در عین حال چشم انداز چگونگی استفاده از ابزارهای محاسباتی در عمل مهندسی را به دانشجویان ارائه می دهد. رویکرد کلاسیک سنتی، یا ماکروسکوپی، در سراسر متن استفاده می‌شود، و استدلال‌های میکروسکوپی در صورت مناسب نقش حمایتی را ایفا می‌کنند. این رویکرد بیشتر با شهود دانش‌آموزان مطابقت دارد و یادگیری موضوع را بسیار آسان‌تر می‌کند.

توضیحاتی درمورد کتاب به خارجی

The subject of thermodynamics deals with energy and has long been an essential part of engineering curricula all over the world. Its broad application area ranges from microscopic organisms to common household appliances, transportation vehicles, power generation systems, and even philosophy. This introductory book contains sufficient material for two sequential courses in thermodynamics, and students are assumed to have an adequate background in calculus and physics.

A conscious effort is made to emphasize the basic principles of thermodynamics while also providing students with a perspective of how computational tools are used in engineering practice. The traditional classical, or macroscopic, approach is used throughout the text, with microscopic arguments serving in a supporting role as appropriate. This approach is more in line with students’ intuition and makes learning the subject matter much easier.


فهرست مطالب

Cover
Title
Copyright
Quotes on Ethics
About the Authors
Preface
	Online Resources for Students and Instructors
Brief Contents
Contents (direct linking)
1- INTRODUCTION AND BASIC CONCEPTS
	1–1: THERMODYNAMICS AND ENERGY
		Application Areas of Thermodynamics
	1–2: IMPORTANCE OF DIMENSIONS AND UNITS
		Some SI and English Units
		Dimensional Homogeneity
		Unity Conversion Ratios
	1–3: SYSTEMS AND CONTROL VOLUMES
	1–4: PROPERTIES OF A SYSTEM
		Continuum
	1–5: DENSITY AND SPECIFIC GRAVITY
	1–6: STATE AND EQUILIBRIUM
		The State Postulate
	1–7: PROCESSES AND CYCLES
	1–8: TEMPERATURE AND THE ZEROTH LAW OF THERMODYNAMICS
		Temperature Scales
		The International Temperature Scale of 1990 (ITS-90)
	1–9: PRESSURE
		Variation of Pressure with Depth
	1–10: PRESSURE MEASUREMENT DEVICES
		The Barometer
		The Manometer
		Other Pressure Measurement Devices
	1–11: PROBLEM-SOLVING TECHNIQUE
		Step 1: Problem Statement
		Step 2: Schematic
		Step 3: Assumptions and Approximations
		Step 4: Physical Laws
		Step 5: Properties
		Step 6: Calculations
		Step 7: Reasoning, Verification, and Discussion
		Engineering Software Packages
		Equation Solvers
		A Remark on Significant Digits
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
2- ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS
	2–1: INTRODUCTION
	2–2: FORMS OF ENERGY
		Some Physical Insight to Internal Energy
		More on Nuclear Energy
		Mechanical Energy
	2–3: ENERGY TRANSFER BY HEAT
		Historical Background on Heat
	2–4: ENERGY TRANSFER BY WORK
		Electrical Work
	2–5: MECHANICAL FORMS OF WORK
		Shaft Work
		Spring Work
		Work Done on Elastic Solid Bars
		Work Associated with the Stretching
		Work Done to Raise or to Accelerate a Body
		Nonmechanical Forms of Work
	2–6: THE FIRST LAW OF THERMODYNAMICS
		Energy Balance
		Energy Change of a System, ΔEsystem
		Mechanisms of Energy Transfer, Ein and Eout
	2–7: ENERGY CONVERSION EFFICIENCIES
		Efficiencies of Mechanical and Electrical Devices
	2–8: ENERGY AND ENVIRONMENT
		Ozone and Smog
		Acid Rain
		The Greenhouse Effect: Global Warming and Climate Change
	Topic of Special Interest: Mechanisms of Heat Transfer
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
3- PROPERTIES OF PURE SUBSTANCES
	3–1: PURE SUBSTANCE
	3–2: PHASES OF A PURE SUBSTANCE
	3–3: PHASE-CHANGE PROCESSES OF PURE SUBSTANCES
		Compressed Liquid and Saturated Liquid
		Saturated Vapor and Superheated Vapor
		Saturation Temperature and Saturation Pressure
		Some Consequences of Tsat and Psat Dependence
	3–4: PROPERTY DIAGRAMS FOR PHASE-CHANGE PROCESSES
		1 The T-v Diagram
		2 The P-v Diagram
		Extending the Diagrams to Include the Solid Phase
		3 The P-T Diagram
		The P-v-T Surface
	3–5: PROPERTY TABLES
		Enthalpy—A Combination Property
		1a Saturated Liquid and Saturated
		1b Saturated Liquid–Vapor Mixture
		2 Superheated Vapor
		3 Compressed Liquid
		Reference State and Reference Values
	3–6: THE IDEAL-GAS EQUATION OF STATE
		Is Water Vapor an Ideal Gas?
	3–7: COMPRESSIBILITY FACTOR—A MEASURE OF DEVIATION FROM IDEAL-GAS BEHAVIOR
	3–8: OTHER EQUATIONS OF STATE
		van der Waals Equation of State
		Beattie-Bridgeman Equation of State
		Benedict-Webb-Rubin Equation of State
		Virial Equation of State
	Topic of Special Interest: Vapor Pressure and Phase Equilibrium
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
4- ENERGY ANALYSIS OF CLOSED SYSTEMS
	4–1: MOVING BOUNDARY WORK
		Polytropic Process
	4–2: ENERGY BALANCE FOR CLOSED SYSTEMS
	4–3: SPECIFIC HEATS
	4–4: INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF IDEAL GASES
		Specific Heat Relations of Ideal Gases
	4–5: INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF SOLIDS AND LIQUIDS
		Internal Energy Changes
		Enthalpy Changes
	Topic of Special Interest: Thermodynamic Aspects of Biological Systems
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
5- MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES
	5–1: CONSERVATION OF MASS
		Mass and Volume Flow Rates
		Conservation of Mass Principle
		Mass Balance for Steady-Flow Processes
		Special Case: Incompressible Flow
	5–2: FLOW WORK AND THE ENERGY OF A FLOWING FLUID
		Total Energy of a Flowing Fluid
		Energy Transport by Mass
	5–3: ENERGY ANALYSIS OF STEADY-FLOW SYSTEMS
	5–4: SOME STEADY-FLOW ENGINEERING DEVICES
		1 Nozzles and Diffusers
		2 Turbines and Compressors
		3 Throttling Valves
		4a Mixing Chambers
		4b Heat Exchangers
		5 Pipe and Duct Flow
	5–5: ENERGY ANALYSIS OF UNSTEADY-FLOW PROCESSES
	Topic of Special Interest: General Energy Equation
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
6- THE SECOND LAW OF THERMODYNAMICS
	6–1: INTRODUCTION TO THE SECOND LAW
	6–2: THERMAL ENERGY RESERVOIRS
	6–3: HEAT ENGINES
		Thermal Efficiency
		Can We Save Qout?
		The Second Law of Thermodynamics:
	6–4: REFRIGERATORS AND HEAT PUMPS
		Coefficient of Performance
		Heat Pumps
		Performance of Refrigerators, Air Conditioners,
		The Second Law of Thermodynamics:
		Equivalence of the Two Statements
	6–5: PERPETUAL-MOTION MACHINES
	6–6: REVERSIBLE AND IRREVERSIBLE PROCESSES
		Irreversibilities
		Internally and Externally Reversible Processes
	6–7: THE CARNOT CYCLE
		The Reversed Carnot Cycle
	6–8: THE CARNOT PRINCIPLES
	6–9: THE THERMODYNAMIC TEMPERATURE SCALE
	6–10: THE CARNOT HEAT ENGINE
		The Quality of Energy
		Quantity versus Quality in Daily Life
	6–11:THE CARNOT REFRIGERATOR AND HEAT PUMP
	Topic of Special Interest: Household Refrigerators
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
7- ENTROPY
	7–1: ENTROPY
		A Special Case: Internally Reversible Isothermal Heat Transfer Processes
	7–2: The Increase of Entropy Principle
		Some Remarks About Entropy
	7–3: Entropy Change of Pure Substances
	7–4: Isentropic Processes
	7–5: Property Diagrams Involving Entropy
	7–6: WHAT IS ENTROPY?
		Entropy and Entropy Generation in Daily Life
	7–7: The T ds Relations
	7–8: Entropy Change of Liquids and Solids
	7–9: The Entropy Change of Ideal Gases
		Constant Specific Heats (Approximate Analysis)
		Variable Specific Heats (Exact Analysis)
		Isentropic Processes of Ideal Gases
		Constant Specific Heats (Approximate Analysis)
		Variable Specific Heats (Exact Analysis)
		Relative Pressure and Relative Specific Volume
	7–10: Reversible Steady-Flow Work
		Proof that Steady-Flow Devices Deliver the Most and Consume the Least Work When the Process Is Reversible
	7–11: Minimizing the Compressor Work
		Multistage Compression with Intercooling
	7–12: Isentropic Efficiencies of Steady-Flow Devices
		Isentropic Efficiency of Turbines
		Isentropic Efficiencies of Compressors and Pumps
		Isentropic Efficiency of Nozzles
	7–13: Entropy Balance
		Entropy Change of a System, ΔSsystem
		Mechanisms of Entropy Transfer, Sin and Sout
		1 Heat Transfer
		2 Mass Flow
		Entropy Generation, Sgen
		Closed Systems
		Control Volumes
		Entropy Generation Associated with a Heat Transfer Process
	Topic of Special Interest: Reducing the Cost of Compressed Air
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
8- EXERGY
	8–1: Exergy: Work Potential of Energy
		Exergy (Work Potential) Associated with Kinetic and Potential Energy
	8–2: Reversible Work and Irreversibility
	8–3: Second-Law Efficiency
	8–4: EXERGY CHANGE OF A SYSTEM
		Exergy of a Fixed Mass: Nonflow (or Closed System) Exergy
		Exergy of a Flow Stream: Flow (or Stream) Exergy
	8–5: Exergy Transfer by Heat, Work, and Mass
		Exergy Transfer by Heat, Q
		Exergy Transfer by Work, W
		Exergy Transfer by Mass, m
	8–6: The Decrease of Exergy Principle and Exergy Destruction
		Exergy Destruction
	8–7: Exergy Balance: Closed Systems
	8–8: Exergy Balance: Control Volumes
		Exergy Balance for Steady-Flow Systems
		Reversible Work
		Second-Law Efficiency of Steady-Flow Devices
	Topic of Special Interest: Second-Law Aspects of Daily Life
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
9- GAS POWER CYCLES
	9–1: Basic Considerations in the Analysis of Power Cycles
	9–2: The Carnot Cycle and its Value in Engineering
	9–3: Air-Standard Assumptions
	9–4: An Overview of Reciprocating Engines
	9–5: Otto Cycle: the Ideal Cycle for Spark-Ignition Engines
	9–6: Diesel Cycle: the Ideal Cycle for Compression-Ignition Engines
	9–7: Stirling and Ericsson Cycles
	9–8: Brayton Cycle: the Ideal Cycle for Gas-Turbine Engines
		Development of Gas Turbines
		Deviation of Actual Gas-Turbine Cycles
	9–9: The Brayton Cycle with Regeneration
	9–10: The Brayton Cycle with Intercooling, Reheating, and Regeneration
	9–11: Ideal Jet-Propulsion Cycles
		Modifications to Turbojet Engines
	9–12: Second-Law Analysis of Gas Power Cycles
	Topic of Special Interest: Saving Fuel and Money by Driving Sensibly
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
10- VAPOR AND COMBINED POWER CYCLES
	10–1: The Carnot Vapor Cycle
	10–2: Rankine Cycle: the Ideal Cycle for Vapor Power Cycles
		Energy Analysis of the Ideal Rankine Cycle
	10–3: Deviation of Actual Vapor Power Cycles From Idealized Ones
	10–4: How Can we Increase the Efficiency of the Rankine Cycle?
		Lowering the Condenser Pressure (Lowers Tlow,avg)
		Superheating the Steam to High Temperatures (Increases Thigh,avg)
		Increasing the Boiler Pressure (Increases Thigh,avg)
	10–5: The Ideal Reheat Rankine Cycle
	10–6: The Ideal Regenerative Rankine Cycle
		Open Feedwater Heaters
		Closed Feedwater Heaters
	10–7: Second-Law Analysis of Vapor Power Cycles
	10–8: Cogeneration
	10–9: Combined Gas–Vapor Power Cycles
	Topic of Special Interest: Binary Vapor Cycles
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
11- REFRIGERATION CYCLES
	11–1: Refrigerators and Heat Pumps
	11–2: The Reversed Carnot Cycle
	11–3: The Ideal Vapor-Compression Refrigeration Cycle
	11–4: Actual Vapor-Compression Refrigeration Cycle
	11–5: Second-Law Analysis of Vapor-Compression Refrigeration Cycle
	11–6: Selecting the Right Refrigerant
	11–7: Heat Pump Systems
	11–8: Innovative Vapor-Compression Refrigeration Systems
		Cascade Refrigeration Systems
		Multistage Compression Refrigeration Systems
		Multipurpose Refrigeration Systems with a Single Compressor
		Liquefaction of Gases
	11–9: Gas Refrigeration Cycles
	11–10: Absorption Refrigeration Systems
	Topic of Special Interest: Thermoelectric Power Generation and Refrigeration Systems
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
12- THERMODYNAMIC PROPERTY RELATIONS
	12–1: A Little Math—Partial Derivatives and Associated Relations
		Partial Differentials
		Partial Differential Relations
	12–2: The Maxwell Relations
	12–3: The Clapeyron Equation
	12–4: General Relations for du, dh, ds, cv, and cp
		Internal Energy Changes
		Enthalpy Changes
		Entropy Changes
		Specific Heats cv and cp
	12–5: The Joule-Thomson Coefficient
	12–6: The Δh, Δu, and Δs of Real Gases
		Enthalpy Changes of Real Gases
		Internal Energy Changes of Real Gases
		Entropy Changes of Real Gases
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
13- GAS MIXTURES
	13–1: Composition of a Gas Mixture: Mass and Mole Fractions
	13–2: P-v-T Behavior of Gas Mixtures: Ideal and Real Gases
		Ideal-Gas Mixtures
		Real-Gas Mixtures
	13–3: Properties of Gas Mixtures: Ideal and Real Gases
		Ideal-Gas Mixtures
		Real-Gas Mixtures
	Topic of Special Interest: Chemical Potential and the Separation Work of Mixtures
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
14- GAS–VAPOR MIXTURES AND AIR-CONDITIONING
	14–1: Dry and Atmospheric Air
	14–2: Specific and Relative Humidity of air
	14–3: Dew-Point Temperature
	14–4: Adiabatic Saturation and Wet-Bulb Temperatures
	14–5: The Psychrometric Chart
	14–6: Human Comfort and Air-Conditioning
	14–7: Air-Conditioning Processes
		Simple Heating and Cooling (ω = constant)
		Heating with Humidification
		Cooling with Dehumidification
		Evaporative Cooling
		Adiabatic Mixing of Airstreams
		Wet Cooling Towers
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS*
15- CHEMICAL REACTIONS
	15–1: Fuels and Combustion
	15–2: Theoretical and Actual Combustion Processes
	15–3: Enthalpy of Formation and Enthalpy of Combustion
	15–4: First-Law Analysis of Reacting Systems
		Steady-Flow Systems
		Closed Systems
	15–5: Adiabatic Flame Temperature
	15–6: Entropy Change of Reacting Systems
	15–7: Second-Law Analysis of Reacting Systems
	Topic of Special Interest: Fuel Cells
	SUMMARY
	References and Suggested Readings
	PROBLEMS
16- CHEMICAL AND PHASE EQUILIBRIUM
	16–1: Criterion for Chemical Equilibrium
	16–2: The Equilibrium Constant for Ideal-Gas Mixtures
	16–3: Some Remarks about the KP of Ideal-Gas Mixtures
	16–4: Chemical Equilibrium for Simultaneous Reactions
	16–5: Variation of KP with Temperature
	16–6: PHASE EQUILIBRIUM
		Phase Equilibrium for a Single-Component System
		The Phase Rule
		Phase Equilibrium for a Multicomponent System
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS
17- COMPRESSIBLE FLOW
	17–1: Stagnation Properties
	17–2: Speed of Sound and Mach Number
	17–3: One-Dimensional Isentropic Flow
		Variation of Fluid Velocity with Flow Area
		Property Relations for Isentropic Flow of Ideal Gases
	17–4: Isentropic Flow Through Nozzles
		Converging Nozzles
		Converging–Diverging Nozzles
	17–5: Shock Waves and Expansion Waves
		Normal Shocks
		Oblique Shocks
		Prandtl–Meyer Expansion Waves
	17–6: Duct Flow with Heat Transfer and Negligible Friction (Rayleigh Flow)
		Property Relations for Rayleigh Flow
		Choked Rayleigh Flow
	17–7: Steam Nozzles
	SUMMARY
	REFERENCES AND SUGGESTED READINGS
	PROBLEMS
18- RENEWABLE ENERGY
APPENDICES
	1: PROPERTY TABLES AND CHARTS (SI UNITS)
		Table A–1 Molar mass, gas constant, and critical-point properties
		Table A–2 Ideal-gas specific heats of various common gases
		Table A–3 Properties of common liquids, solids, and foods
		Table A–4 Saturated water—Temperature table
		Table A–5 Saturated water—Pressure table
		Table A–6 Superheated water
		Table A–7 Compressed liquid water
		Table A–8 Saturated ice–water vapor
		Figure A–9 T-s diagram for water
		Figure A–10 Mollier diagram for water
		Table A–11 Saturated refrigerant-134a—Temperature table
		Table A–12 Saturated refrigerant-134a—Pressure table
		Table A–13 Superheated refrigerant-134a
		Figure A–14 P-h diagram for refrigerant-134a
		Figure A–15 Nelson–Obert generalized compressibility charts
		Table A–16 Properties of the atmosphere at high altitude
		Table A–17 Ideal-gas properties of air
		Table A–18 Ideal-gas properties of nitrogen, N2
		Table A–19 Ideal-gas properties of oxygen, O2
		Table A–20 Ideal-gas properties of carbon dioxide, CO2
		Table A–21 Ideal-gas properties of carbon monoxide, CO
		Table A–22 Ideal-gas properties of hydrogen, H2
		Table A–23 Ideal-gas properties of water vapor, H2O
		Table A–24 Ideal-gas properties of monatomic oxygen, O
		Table A–25 Ideal-gas properties of hydroxyl, OH
		Table A–26 Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm
		Table A–27 Properties of some common fuels and hydrocarbons
		Table A–28 Natural logarithms of the equilibrium constant Kp
		Figure A–29 Generalized enthalpy departure chart
		Figure A–30 Generalized entropy departure chart
		Figure A–31 Psychrometric chart at 1 atm total pressure
		Table A–32 One-dimensional isentropic compressible-flow functions for an ideal gas with k = 1.4
		Table A–33 One-dimensional normal-shock functions for an ideal gas with k = 1.4
		Table A–34 Rayleigh flow functions for an ideal gas with k = 1.4
	2: PROPERTY TABLES AND CHARTS (ENGLISH UNITS)
		Table A–1E Molar mass, gas constant, and critical-point properties
		Table A–2E Ideal-gas specific heats of various common gases
		Table A–3E Properties of common liquids, solids, and foods
		Table A–4E Saturated water—Temperature table
		Table A–5E Saturated water—Pressure table
		Table A–6E Superheated water
		Table A–7E Compressed liquid water
		Table A–8E Saturated ice–water vapor
		Figure A–9E T-s diagram for water
		Figure A–10E Mollier diagram for water
		Table A–11E Saturated refrigerant-134a—Temperature table
		Table A–12E Saturated refrigerant-134a—Pressure table
		Table A–13E Superheated refrigerant-134a
		Figure A–14E P-h diagram for refrigerant-134a
		Table A–16E Properties of the atmosphere at high altitude
		Table A–17E Ideal-gas properties of air
		Table A–18E Ideal-gas properties of nitrogen, N2
		Table A–19E Ideal-gas properties of oxygen, O2
		Table A–20E Ideal-gas properties of carbon dioxide, CO2
		Table A–21E Ideal-gas properties of carbon monoxide, CO
		Table A–22E Ideal-gas properties of hydrogen, H2
		Table A–23E Ideal-gas properties of water vapor, H2O
		Table A–26E Enthalpy of formation, Gibbs function of formation, and absolute entropy at 77°F, 1 atm
		Table A–27E Properties of some common fuels and hydrocarbons
		Figure A–31E Psychrometric chart at 1 atm total pressure
Index
NOMENCLATURE
CONVERSION FACTORS
18- Renewable Energy (from 8th ed 2015)
	Contents
	Objectives
	18–1 Introduction
	18–2 Solar Energy
	18–3 Wind Energy
	18–4 Hydropower
	18–5 Geothermal Energy
	18–6 Biomass Energy
	Summary
	References and Suggested Reading
	Problems




نظرات کاربران