دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jibamitra Ganguly
سری:
ISBN (شابک) : 9783030208790, 3030208796
ناشر: Springer Nature
سال نشر: 2020
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 36 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Thermodynamics in Earth and Planetary Sciences به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترمودینامیک در علوم زمین و سیاره نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر اساس یک دوره دانشگاهی، طیف وسیعی از مسائل زمین شناسی، ژئوشیمیایی و ژئوفیزیکی را ارائه می دهد که قابل تجزیه و تحلیل ترمودینامیکی هستند. همچنین شامل مسائل منتخب در علوم سیارهای، روابط بین ترمودینامیک و خواص میکروسکوپی، اثرات اندازه ذرات، روشهای تقریب خواص ترمودینامیکی کانیها، و برخی انشعابهای جنبشی تولید آنتروپی است. این کتاب درسی دانشجویان فارغ التحصیل و محققان را به طور یکسان قادر می سازد تا از اصول بنیادی ترمودینامیک و کاربردهای گسترده آنها در فرآیندها و سیستم های طبیعی آگاهی پیدا کنند.
Based on a university course, this book provides an exposition of a large spectrum of geological, geochemical and geophysical problems that are amenable to thermodynamic analysis. It also includes selected problems in planetary sciences, relationships between thermodynamics and microscopic properties, particle size effects, methods of approximation of thermodynamic properties of minerals, and some kinetic ramifications of entropy production. The textbook will enable graduate students and researchers alike to develop an appreciation of the fundamental principles of thermodynamics, and their wide ranging applications to natural processes and systems.
Preface to the Second Edition Preface to the First Edition Contents Commonly Used Symbols Physical and Chemical Constants Some Commonly Used Physical Quantities: SI Units and Conversions About the Author 1 Introduction 1.1 Nature and Scope of Thermodynamics 1.2 Irreversible and Reversible Processes 1.3 Thermodynamic Systems, Walls and Variables 1.4 Work 1.5 Stable and Metastable Equilibrium 1.6 Lattice Vibrations 1.7 Electronic Configurations and Crystal Field Effects 1.7.1 Electronic Shells, Subshells and Orbitals 1.7.2 Crystal or Ligand Field Effects 1.8 Some Useful Physical Quantities and Units References 2 First and Second Laws 2.1 The First Law 2.2 Second Law: The Classic Statements 2.3 Carnot Cycle: Entropy and Absolute Temperature Scale 2.4 Entropy: Direction of Natural Processes and Equilibrium 2.5 Microscopic Interpretation of Entropy: Boltzmann Relation 2.6 Black Hole and Generalized Second Law of Thermodynamics 2.7 Entropy and Disorder: Mineralogical Applications 2.7.1 Configurational Entropy 2.7.1.1 Random Atomic Distribution: Complete Disorder 2.7.1.2 Ordering with Random Atomic Distribution Within Each Sublattice 2.7.1.3 Solved Problem: Change of Configurational Entropy Due to Random Mixing of Gases 2.7.1.4 Constrained Random Atomic Distribution Within a Sublattice 2.7.2 Vibrational Entropy 2.7.3 Configurational Versus Vibrational Entropy 2.8 First and Second Laws: Combined Statement 2.9 Condition of Thermal Equilibrium: An Illustrative Application of the Second Law 2.10 Limiting Efficiency of a Heat Engine and Heat Pump 2.10.1 Heat Engine 2.10.2 Heat Pump 2.10.3 Heat Engines in Nature References 3 Thermodynamic Potentials and Derivative Properties 3.1 Thermodynamic Potentials 3.2 Equilibrium Conditions for Closed Systems: Formulations in Terms of the Potentials 3.3 What Is Free in Free Energy? 3.4 Maxwell Relations 3.5 Thermodynamic Square: A Mnemonic Tool 3.6 Vapor Pressure and Fugacity 3.7 Derivative Properties 3.7.1 Thermal Expansion and Compressibility 3.7.2 Heat Capacities 3.8 Grüneisen Parameter 3.9 P–T Dependencies of Coefficient of Thermal Expansion and Compressibility 3.10 Summary of Thermodynamic Derivatives References 4 Third Law and Thermochemistry 4.1 The Third Law and Entropy 4.1.1 Observational Basis and Statement 4.1.2 Third Law Entropy and Residual Entropy 4.2 P-T Dependence of Heat Capacity Functions 4.3 Non-lattice Contributions to Heat Capacity and Entropy of Pure Solids 4.3.1 Electronic Transitions 4.3.2 Magnetic Transitions 4.4 Unattainability of Absolute Zero 4.5 Thermochemistry: Formalisms and Conventions 4.5.1 Enthalpy of Formation 4.5.2 Hess’s Law 4.5.3 Gibbs Free Energy of Formation 4.5.4 Thermochemical Data References 5 Critical Phenomenon and Equations of States 5.1 Critical End Point 5.2 Near- and Super-Critical Properties 5.2.1 Divergence of Thermal and Thermo-Physical Properties 5.2.2 Critical Fluctuations 5.2.3 Super- and Near-Critical Fluids 5.3 Near-Critical Properties of Water and Magma-Hydrothermal Systems 5.4 Equations of State 5.4.1 Gas 5.4.1.1 Van der Waals and Reduced Equations of State 5.4.1.2 Principle of Corresponding States and Compressibility Factor 5.4.1.3 Redlich-Kwong and Related Equations of State 5.4.1.4 Virial and Virial-Type EoS 5.4.2 Solid and Melt 5.4.2.1 Birch-Murnaghan Equations 5.4.2.2 Further Developments for High P-T Conditions References 6 Phase Transitions, Melting, and Reactions of Stoichiometric Phases 6.1 Gibbs Phase Rule: Preliminaries 6.2 Phase Transformations and Polymorphism 6.2.1 Thermodynamic Classification of Phase Transformations 6.3 Landau Theory of Phase Transition 6.3.1 General Outline 6.3.2 Derivation of Constraints on the Second Order Coefficient 6.3.3 Effect of Odd Order Coefficient on Phase Transition 6.3.4 Order Parameter Versus Temperature: Second Order and Tricritical Transformations 6.3.5 Landau Potential Versus Order Parameter: Implications for Kinetics 6.3.6 Some Applications to Mineralogical and Geophysical Problems 6.4 Reactions in the P-T Space 6.4.1 Conditions of Stability and Equilibrium 6.4.2 P-T Slope: Clapeyron-Clausius Relation 6.5 Temperature Maximum on Dehydration and Melting Curves 6.6 Extrapolation of Melting Temperature to High Pressures 6.6.1 Kraut-Kennedy Relation 6.6.2 Lindemann-Gilvarry Relation 6.7 Calculation of Equilibrium P-T Conditions of a Reaction 6.7.1 Equilibrium Pressure at a Fixed Temperature 6.7.1.1 Solved Problem: Depth of Diamond Formation 6.7.2 Effect of Polymorphic Transition 6.8 Evaluation of Gibbs Energy and Fugacity at High Pressure Using Equations of States 6.8.1 Birch-Murnaghan Equation of State 6.8.2 Vinet Equation of State 6.8.3 Redlich-Kwong and Related Equations of State for Fluids 6.9 Schreinemakers’ Principles 6.9.1 Enumerating Different Types of Equilibria 6.9.2 Self-consistent Stability Criteria 6.9.3 Effect of an Excess Phase 6.9.4 Concluding Remarks References 7 Thermal Pressure, Earth’s Interior and Adiabatic Processes 7.1 Thermal Pressure 7.1.1 Thermodynamic Relations 7.1.2 Core of the Earth 7.1.3 Magma-Hydrothermal System 7.2 Adiabatic Temperature Gradient 7.3 Temperature Gradients in the Earth’s Mantle and Outer Core 7.3.1 Upper Mantle 7.3.2 Lower Mantle and Core 7.4 Isentropic Melting in the Earth’s Interior 7.5 The Earth’s Mantle and Core: Linking Thermodynamics and Seismic Velocities 7.5.1 Relations Among Elastic Properties and Sound Velocities 7.5.2 Radial Density Variation 7.5.2.1 Williamson-Adams Equation 7.5.3 Transition Zone in the Earth’s Mantle 7.6 Horizontal Adiabatic Flow at Constant Velocity 7.6.1 Joule-Thompson Experiment and Coefficient 7.6.2 Entropy Production in Joule-Thompson Expansion 7.7 Adiabatic Flow with Change of Kinetic and Potential Energies 7.7.1 Horizontal Flow with Change of Kinetic Energy: Bernoulli Equation 7.7.2 Vertical Flow 7.7.2.1 Change of Temperature with Pressure 7.7.2.2 Geyser Eruption 7.8 Ascent of Material Within the Earth’s Interior 7.8.1 Irreversible Decompression and Melting of Mantle Rocks 7.8.2 Thermal Effect of Volatile Ascent: Coupling Fluid Dynamics and Thermodynamics References 8 Thermodynamics of Solutions 8.1 Chemical Potential and Chemical Equilibrium 8.2 Partial Molar Properties 8.3 Determination of Partial Molar Properties 8.3.1 Binary Solutions 8.3.2 Multicomponent Solutions 8.3.2.1 Darken Equation 8.3.2.2 Hillert Equation 8.4 Fugacity and Activity of a Component in a Solution 8.5 Determination of Activity of a Component Using Gibbs-Duhem Relation 8.6 Molar Properties of a Solution 8.6.1 Formulations 8.6.2 Entropy of Mixing and Choice of Activity Expression 8.7 Ideal Solution and Excess Thermodynamic Properties 8.7.1 Thermodynamic Relations 8.7.2 Ideality of Mixing: Remark on the Choice of Components and Properties 8.8 Solute and Solvent Behaviors in Dilute Solution 8.8.1 Henry’s Law 8.8.2 Raoult’s Law 8.9 Speciation of Water in Silicate Melt 8.10 Standard States: Recapitulations and Comments 8.11 Stability of a Solution 8.11.1 Intrinsic Stability and Instability of a Solution 8.11.2 Extrinsic Instability: Decomposition of a Solid Solution 8.12 Spinodal, Critical and Binodal (Solvus) Conditions 8.12.1 Thermodynamic Formulations 8.12.2 Upper and Lower Critical Temperatures 8.13 Effect of Coherency Strain on Exsolution 8.14 Spinodal Decomposition 8.15 Solvus Thermometry 8.16 Chemical Potential in a Field 8.16.1 Formulations 8.16.2 Applications 8.16.2.1 Variation of Pressure and Composition in the Earth’s Atmosphere 8.16.2.2 Solution in a Gravitational Field 8.16.2.3 Variation of Isotopic Ratios with Height 8.16.2.4 A Case Study of Equilibrium Distribution in a Gravitational Field 8.17 Osmotic Equilibrium 8.17.1 Osmotic Pressure, Reverse Osmosis 8.17.2 Natural Salinity Gradients and Power Generation 8.17.3 Osmotic Coefficient 8.17.4 Determination of Molecular Weight of a Solute References 9 Thermodynamic Solution and Mixing Models: Non-electrolytes 9.1 Ionic Solutions 9.1.1 Single Site, Sublattice and Reciprocal Solution Models 9.1.2 Disordered Solutions 9.1.3 Coupled Substitutions 9.1.4 Ionic Melt: Temkin and Other Models 9.2 Mixing Models in Binary Systems 9.2.1 Guggenheim or Redlich-Kister, Simple Mixture and Regular Solution Models 9.2.2 Subregular Model 9.2.3 Darken’s Quadratic Formulation 9.2.4 Quasi-chemical and Related Models 9.2.5 Athermal, Flory-Huggins and NRTL (Non-random Two Liquid) Models 9.2.6 Van Laar Model 9.2.7 Associated Solutions 9.3 Multicomponent Solutions 9.3.1 Power Series Multicomponent Models 9.3.2 Projected Multicomponent Models 9.3.3 Comparison Between Power Series and Projected Methods 9.3.4 Estimation of Higher Order Interaction Terms 9.3.5 Solid Solutions with Multi-site Mixing 9.3.6 Concluding Remarks References 10 Equilibria Involving Solutions and Gaseous Mixtures 10.1 Extent and Equilibrium Condition of a Reaction 10.2 Gibbs Free Energy Change and Affinity of a Reaction 10.3 Gibbs Phase Rule and Duhem’s Theorem 10.3.1 Phase Rule 10.3.1.1 General Derivation 10.3.1.2 Special Case: Externally Buffered Systems 10.3.2 Duhem’s Theorem 10.4 Equilibrium Constant of a Chemical Reaction 10.4.1 Definition and Relation with Activity Product 10.4.2 Pressure and Temperature Dependencies of Equilibrium Constant 10.5 Solid-Gas and Homogeneous Gas Speciation Reactions 10.5.1 Condensation of Solar Nebula 10.5.2 Surface-Atmosphere Interaction in Venus 10.5.3 Metal-Silicate Reaction in Meteorite Mediated by Dry Gas Phase 10.5.4 Effect of Vapor Composition on Equilibrium Temperature: T Versus Xv Sections 10.5.4.1 Binary Vapor Phase 10.5.4.2 Ternary Vapor Phase 10.5.5 Volatile Compositions and Oxidation States of Natural Systems 10.5.5.1 Oxidation States of Planetary Systems 10.5.5.2 Volatile Compositions: Metamorphic and Magmatic Systems 10.6 Equilibrium Temperature Between Solid and Melt 10.6.1 Eutectic and Peritectic Systems 10.6.2 Systems Involving Solid Solution 10.7 Azeotropic Systems 10.8 Reading Solid-Liquid Phase Diagrams 10.8.1 Eutectic and Peritectic Systems 10.8.2 Crystallization and Melting of a Binary Solid Solution 10.8.3 Intersection of Melting Loop and a Solvus 10.8.4 Ternary Systems 10.9 Natural Systems: Granites and Lunar Basalts 10.9.1 Granites 10.9.2 Lunar Basalts 10.10 Pressure Dependence of Eutectic Temperature and Composition 10.11 Reactions in Impure Systems 10.11.1 Reactions Involving Solid Solutions 10.11.2 Reactions Involving Solid Solutions and Gaseous Mixture 10.11.2.1 Thermodynamic Formulations 10.12 Retrieval of Activity Coefficient from Phase Equilibria 10.13 Equilibrium Abundance and Compositions of Phases 10.13.1 Closed System at Constant P-T 10.13.2 Closed System at Constant V-T 10.13.3 Minimization of Korzhinskii Potential References 11 Element Fractionation in Geological Systems 11.1 Fractionation of Major Elements 11.1.1 Exchange Equilibrium and Distribution Coefficient 11.1.2 Temperature and Pressure Dependence of KD 11.1.3 Compositional Dependence of KD 11.1.4 Thermometric Formulation 11.2 Trace Element Fractionation Between Mineral and Melt 11.2.1 Thermodynamic Formulations 11.2.2 Illustrative Applications 11.2.2.1 Trace Element Pattern of Basalt Derived from Garnet-Peridotite 11.2.2.2 Highly Incompatible Trace Element as Indicator of Source Region of Melt 11.2.3 Estimation of Partition Coefficient 11.3 Metal-Silicate Fractionation: Magma Ocean and Core Formation 11.3.1 Pressure Dependence of Metal-Silicate Partition Coefficients 11.3.2 Pressure Dependence of Metal-Silicate Distribution Coefficients 11.3.3 Pressure Dependencies of Ni Versus Co Partition- and Distribution-Coefficients: Depth of Terrestrial Magma Ocean 11.4 Effect of Temperature and f(O2) on Metal-Silicate Partition Coefficient References 12 Electrolyte Solutions and Electrochemistry 12.1 Chemical Potential 12.2 Activity and Activity Coefficients: Mean Ion Formulations 12.3 Mass Balance Relation 12.4 Standard State Convention and Properties 12.4.1 Solute Standard State 12.4.2 Standard State Properties of Ions 12.5 Equilibrium Constant, Solubility Product and Ion Activity Product: Survival of Marine Carbonate Organisms 12.6 Ion Activity Coefficients and Ionic Strength 12.6.1 Debye-Hückel and Related Methods 12.6.2 Mean-Salt Method 12.7 Multicomponent High Ionic Strength and High P-T Systems 12.8 Activity Diagrams of Mineral Stabilities 12.8.1 Method of Calculation 12.8.2 Illustrative Applications 12.8.2.1 Spring Waters 12.8.2.2 Stability of Magnesium Silicates 12.9 Electrochemical Cells, Nernst Equation and f(O2) Measurement by Solid Electrolyte 12.9.1 Electrochemical Cell and Half-Cells 12.9.2 Emf of a Cell and Nernst Equation 12.9.3 Oxygen Fugacity Measurement Using Solid Electrolyte Sensor 12.9.4 Standard Emf of Half-Cell and Full-Cell Reactions 12.10 Hydrogen Ion Activity in Aqueous Solution: pH and Acidity 12.11 Eh-pH Stability Diagrams 12.12 Chemical Model of Sea Water References 13 Surface Effects 13.1 Surface Tension and Energetic Consequences 13.2 Surface Thermodynamic Functions and Adsorption 13.3 Temperature, Pressure and Compositional Effects on Surface Tension 13.4 Langmuir Isotherm 13.5 Crack Propagation 13.6 Equilibrium Shape of Crystals 13.7 Contact and Dihedral Angles 13.8 Dihedral Angle and Interconnected Melt or Fluid Channels 13.8.1 Connectivity of Melt Phase and Thin Melt Film in Rocks 13.8.2 Core Formation in Earth and Mars 13.9 Surface Tension and Grain Coarsening 13.10 Effect of Particle Size on Solubility and Melting 13.11 Coarsening of Exsolution Lamellae 13.12 Nucleation 13.12.1 Theory 13.12.2 Microstructures of Metals in Meteorites 13.13 Effect of Particle Size on Mineral Stability References 14 Statistical Thermodynamics Primer 14.1 Boltzmann Distribution and Partition Function 14.2 Thermodynamic Properties 14.3 Expressions of Partition Functions 14.4 Heat Capacity of Solids 14.5 Chemical Equilibria and Stable Isotope Fractionation 14.5.1 General Treatment of Chemical Reaction 14.5.2 Stable Isotope Fractionation: Theoretical Foundation 14.5.3 Stable Isotope Fractionation: Some Geochemical Applications 14.5.3.1 “Clumped Isotope” Thermometry 14.5.3.2 Mineral-Hydrogen/Water Stable Isotope Fractionation References Appendix_1 A.4. Onsager Reciprocity Relation and Thermodynamic Applications B.7. Sterling’s Approximation C.3.3. Ab Initio Calculation of Thermodynamic Properties References Author Index Subject Index