دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ترمودینامیک و مکانیک آماری ویرایش: نویسندگان: Stephen R. Turns سری: ISBN (شابک) : 9780521850421, 2005033974 ناشر: سال نشر: 2006 تعداد صفحات: 1120 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 68 مگابایت
در صورت تبدیل فایل کتاب Thermodynamics Concepts and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مفاهیم و کاربردهای ترمودینامیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اگرچه تمرکز این کتاب درسی بر مباحث ترمودینامیک سنتی است، اما این کتاب به معرفی علوم حرارتی سیالات نیز می پردازد. این برای مربی طراحی شده است که موضوعات را انتخاب کند و آنها را به طور یکپارچه با مطالب سایر فصل ها ترکیب کند. ابزارهای آموزشی عبارتند از: اهداف یادگیری، مروری بر فصل ها و خلاصه ها، دیدگاه های تاریخی، و مثال های متعدد، پرسش ها، مسائل و تصاویر فاخر. دانشجویان تشویق می شوند از پایگاه داده خواص آنلاین موسسه ملی علم و فناوری (NIST) استفاده کنند.
Although the focus of this textbook is on traditional thermodynamics topics, the book is concerned with introducing the thermal-fluid sciences as well. It is designed for the instructor to select topics and seamlessly combine them with material from other chapters. Pedagogical devices include: learning objectives, chapter overviews and summaries, historical perspectives, and numerous examples, questions, problems and lavish illustrations. Students are encouraged to use the National Institute of Science and Technology (NIST) online properties database.
Half Title Title Page Copyright Dedication Contents Sample Syllabus Preface Acknowledgments Chapter 1 • Beginnings Learning Objectives Overview 1.1 What is Thermodynamics 1.2 Some Applications 1.2a Fossil-Fueled Steam Power Plants 1.2b Spark-Ignition Engines 1.2c Jet Engines 1.3 Physical Frameworks for Analysis 1.3a Systems 1.3b Control Volumes 1.4 Preview of Conservation Principles 1.4a Generalized Formulation 1.4b Motivation to Study Properties 1.5 Key Concepts and Definitions 1.5a Properties 1.5b States 1.5c Processes 1.5d Cycles 1.5e Equilibrium and the Quasi-Equilibrium Process 1.6 Dimensions and Units 1.7 Problem-Solving Method 1.8 How to Use this Book Summary Key Concepts & Definitions Checklist References Questions and Problems Appendix 1A: Spark-Ignition Engines Chapter 2 • Thermodynamic Properties, Property Relationships, and Processes Learning Objectives Overview 2.1 Key Definitions 2.2 Frequently Used Thermodynamic Properties 2.2a Properties Related to the Equation of State Mass Number of Moles Volume Density Specific Volume Pressure Temperature 2.2b Properties Related to the First Law and Calorific Equation of State Internal Energy Enthalpy Specific Heats and Specific-Heat Ratio 2.2c Properties Related to the Second Law Entropy Gibbs Free Energy or Gibbs Function Helmholtz Free Energy or Helmholtz Function 2.3 Concept of State Relationships 2.3a State Principle 2.3b P–v–T Equations of State 2.3c Calorific Equations of State 2.3d Temperature–Entropy (Gibbs) Relationships 2.4 Ideal Gases as Pure Substances 2.4a Ideal Gas Definition 2.4b Ideal-Gas Equation of State 2.4c Processes in P–v–T Space 2.4d Ideal-Gas Calorific Equations of State 2.4e Ideal-Gas Temperature–Entropy (Gibbs) Relationships 2.4f Ideal-Gas Isentropic Process Relationships 2.4g Processes in T–s and P–v Space 2.4h Polytropic Processes 2.5 Nonideal Gas Properties 2.5a State (P–v–T) Relationships Tabulated Properties Tutorial 1—How to Interpolate Other Equations of State Generalized Compressibility 2.5b Calorific Relationships 2.5c Second-Law Relationships 2.6 Pure Substances Involving Liquid and Vapor Phases 2.6a State (P–v–T ) Relationships Phase Boundaries A New Property—Quality Property Tables and Databases Tutorial 2—How to Use the NIST Software Tutorial 3—How to Define a Thermodynamic State T–v Diagrams P–v Diagrams 2.6b Calorific and Second-Law Properties T–s Diagrams h–s Diagrams 2.7 Liquid Property Approximations 2.8 Solids 2.9 Ideal-Gas Mixtures 2.9a Specifying Mixture Composition 2.9b State (P–v–T ) Relationships for Mixtures 2.9c Standardized Properties 2.9d Calorific Relationships for Mixtures 2.9e Second-Law Relationships for Mixtures 2.10 Some Properties of Reacting Mixtures 2.10a Enthalpy of Combustion 2.10b Heating Values Summary Key Concepts & Definitions Checklist References Nomenclature Questions Problems Appendix 2A: Molecular Interpretation of Entropy Chapter 3 • Conservation of Mass Learning Objectives Overview 3.1 Historical Context 3.2 Mass Conservation for a System 3.3 Mass Conservation for a Control Volume 3.3a Flow rates Uniform Velocity Distributed Velocity Generalized Definition 3.3b Average Velocity 3.3c General View of Mass Conservation for Control Volumes 3.3d Steady-State, Steady Flow 3.3e Unsteady Flows 3.4 Reacting Systems 3.4a Atom Balances 3.4b Stoichiometry Summary Key Concepts & Definitions Checklist References Nomenclature Questions Problems Chapter 4 • Energy and Energy Transfer Learning Objectives Overview 4.1 Historical Context 4.2 System and Control-Volume Energy 4.2a Energy Associated with System or Control Volume as a Whole 4.2b Energy Associated with Matter at a Microscopic Level 4.3 Energy Transfer Across Boundaries 4.3a Heat Definition Semantics 4.3b Work Definition Types 4.4 Sign Conventions and Units 4.5 Rate Laws for Heat Transfer 4.5a Conduction 4.5b Convection 4.5c Radiation Summary Key Concepts & Definitions Checklist References Nomenclature Questions Problems Chapter 5 • Conservation of Energy Learning Objectives Overview 5.1 Historical Context 5.2 Energy Conservation for a System 5.2a General Integral Forms For an Incremental Change For a Change in State At an Instant 5.2b Reacting Systems Constant-Pressure Combustion Constant-Volume Combustion 5.3 Energy Conservation for Control Volumes 5.3a Integral Control Volumes with Steady Flow 5.3b Road Map for Study 5.3c Special Form for Flows with Friction 5.3d Integral Control Volumes with Unsteady Flow Summary Key Concepts & Definitions Checklist References Nomenclature Questions Problems Chapter 6 • Second Law of Thermodynamics and Some of Its Consequences Learning Objectives Overview 6.1 Historical Context 6.2 Usefulness of the Second Law 6.3 One Fundamental Statement of the Second Law 6.3a Reservoirs 6.3b Heat Engines 6.3c Thermal Efficiency and Coefficients of Performance 6.3d Reversibility 6.4 Consequences of the Kelvin–planck statement 6.4a Kelvin’s Absolute Temperature Scale 6.4b The Carnot Efficiency 6.4c Some Reversible Cycles Carnot Cycle Stirling Cycle 6.5 Alternative Statements of the Second Law 6.6 Entropy Revisited 6.6a Definition 6.6b Connecting Entropy to the Second Law 6.6c Entropy Balances Systems Undergoing a Change of State Control Volumes with a Single Inlet and Outlet 6.6d Criterion for Spontaneous Change 6.6e Isentropic Efficiency 6.6f Entropy Production, Head Loss, and Isentropic Efficiency 6.7 The Second Law and Equilibrium 6.7a Chemical Equilibrium Conditions of Fixed Internal Energy and Volume Conditions of Fixed Temperature and Pressure Multiple Equilibrium Reactions 6.7b Phase Equilibrium 6.8 Availability (Exergy) 6.8a Definitions 6.8b Closed System Availability 6.8c Closed System Availability Balance 6.8d Control Volume Availability 6.8e Control Volume Availability Balance Summary Key Concepts & Definitions Checklist References Nomenclature Questions Problems Chapter 7 • Steady-Flow Devices Learning Objectives Overview 7.1 Steady-Flow Devices 7.2 Nozzles and Diffusers 7.2a General Analysis Mass Conservation Energy Conservation 7.2b Incompressible Flow 7.2c Compressible Flow A Few New Concepts and Definitions Mach Number–Based Conservation Principles and Property Relationships Converging and Converging–Diverging Nozzles Nozzle Efficiency 7.3 Throttles 7.3a Analysis Mass Conservation Energy Conservation Mechanical Energy Conservation 7.3b Applications 7.4 Pumps, Compressors, and Fans 7.4a Classifications 7.4b Analysis Control Volume Choice Application of Conservation Principles Efficiencies 7.5 Turbines 7.5a Classifications and Applications 7.5b Analysis 7.6 Heat Exchangers 7.6a Classifications and Applications 7.6b Analysis Conservation of Mass Conservation of Energy 7.7 Furnaces, Boilers, and Combustors 7.7a Some Applications 7.7b Analysis Assumptions Mass Conservation Energy Conservation Summary Key Concepts & Definitions Checklist References Nomenclature Questions Problems Chapter 8 • Systems for Power Production, Propulsion, and Heating and Cooling Learning Objectives Overview 8.1 Fossil-Fueled Steam Power Plants 8.1a Rankine Cycle Revisited 8.1b Rankine Cycle with Superheat and Reheat Superheat Reheat 8.1c Rankine Cycle with Regeneration Mass Conservation Energy Conservation 8.1d Energy Input from Combustion 8.1e Overall Energy Utilization 8.2 Jet Engines 8.2a Basic Operation of a Turbojet Engine 8.2b Integral Control Volume Analysis of a Turbojet Assumptions Mass Conservation Energy Conservation Momentum Conservation 8.2c Turbojet Cycle Analysis Given Conditions Assumptions Approach 8.2d Propulsive Efficiency 8.2e Other Performance Measures 8.2f Combustor Analysis Assumptions Mass Conservation Energy Conservation 8.3 Gas-Turbine Engines 8.3a Integral Control Volume Analysis Assumptions Mass Conservation Energy Conservation 8.3b Cycle Analysis and Performance Measures Air-Standard Brayton Cycle Air-Standard Thermal Efficiency Process Thermal Efficiency and Specific Fuel Consumption Power and Size 8.4 Refrigerators and Heat Pumps 8.4a Energy Conservation for a Reversed Cycle 8.4b Performance Measures 8.4c Vapor-Compression Refrigeration Cycle Cycle Analysis Coefficients of Performance 8.5 Air Conditioning, Humidification, and Related Systems 8.5a Physical Systems 8.5b General Analysis Assumptions Mass Conservation Energy Conservation 8.5c Some New Concepts and Definitions Psychrometry Thermodynamic Treatment of Water Vapor in Dry Air Humidity Ratio Relative Humidity Dew Point 8.5d Recast Conservation Equations 8.5e Humidity Measurement Adiabatic Saturation Wet- and Dry-Bulb Temperatures The Psychrometric Chart Summary Key Concepts & Definitions Checklist References Nomenclature Questions Problems Appendix 8A: Turbojet Engine Analysis Revisited Appendix A: Timeline Appendix B: Thermodynamic Properties of Ideal Gases and Carbon Table B.1 CO Table B.2 CO[sub(2)] Table B.3 H[sub(2)] Table B.4 H Table B.5 OH Table B.6 H[sub(2)]O Table B.7 N[sub(2)] Table B.8 N Table B.9 NO Table B.10 NO[sub(2)] Table B.11 O[sub(2)] Table B.12 O Table B.13 C(s) (Graphite) Table B.14 Curve-Fit Coefficients Appendix C: Thermodynamic and Thermo-Physical Properties of Air Table C.1 Approximate Composition, Apparent Molecular Weight, and Gas Constant for Dry Air Table C.2 Thermodynamic Properties of Air at 1 atm Table C.3 Thermo-Physical Properties of Air Appendix D: Thermodynamic Properties of H[sub(2)]O Table D.1 Saturation Properties of Water and Steam—Temperature Increments Table D.2 Saturation Properties of Water and Steam—Pressure Increments Table D.3 Superheated Vapor (Steam) Table D.4 Compressed Liquid (Water) Table D.5 Vapor Properties: Saturated Solid (Ice)–Vapor Appendix E: Various Thermodynamic Data Table E.1 Critical Constants and Specific Heats for Selected Gases Table E.2 Van der Waals Constants for Selected Gases Appendix F: Thermo-Physical Properties of Selected Gases at 1 ATM Table F.1 Thermo-Physical Properties of Selected Gases (1 atm) Appendix G: Thermo-Physical Properties of Selected Liquids Table G.1 Thermo-Physical Properties of Saturated Water Table G.2 Thermo-Physical Properties of Various Saturated Liquids Appendix H: Thermo-Physical Properties of Hydrocarbon Fuels Table H.1 Selected Properties of Hydrocarbon Fuels Table H.2 Curve-Fit Coefficients for Fuel Specific Heat and Enthalpy Table H.3 Curve-Fit Coefficients for Fuel Vapor Thermal Conductivity, Viscosity, and Specific Heat Appendix I: Thermo-Physical Properties of Selected Solids Table I.1 Thermo-Physical Properties of Selected Metallic Solids Table I.2 Thermo-Physical Properties of Selected Nonmetallic Solids Table I.3 Thermo-Physical Properties of Common Materials Appendix J: Radiation Properties of Selected Materials and Substances Table J.1 Total, Normal (n), or Hemispherical (h) Emissivity of Selected Surfaces: Metallic Solids and Their Oxides Table J.2 Total, Normal (n), or Hemispherical (h) Emissivity of Selected Surfaces: Nonmetallic Substances Appendix K: Mach Number Relationships for Compressible Flow Table K.1 One-Dimensional, Isentropic, Variable-Area Flow of Air with Constant Properties (γ = 1.4) Table K.2 One-Dimensional Normal-Shock Functions for Air with Constant Properties (γ = 1.4) Appendix L: Psychrometric Charts Figure L.1 Psychrometric Chart in SI Units (P = 1 atm). Figure L.2 Psychrometric Chart in U.S. Customary Units (P = 14.7 psia). Answers to Selected Problems Illustration Credits Index