دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ترمودینامیک و مکانیک آماری ویرایش: 3rd Edition نویسندگان: Jefferson W. Tester, Michael Modell سری: ISBN (شابک) : 013915356X ناشر: Prentice Hall سال نشر: 1997 تعداد صفحات: 484 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 35 مگابایت
در صورت تبدیل فایل کتاب Thermodynamics and Its Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترمودینامیک و کاربردهای آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بر اساس دوره های تحصیلات تکمیلی نویسندگان در MIT، این متن و مرجع درک یکپارچه ای از مفاهیم مهم ترمودینامیک شیمیایی و کاربردهای آنها ارائه می دهد. بخش اول این کتاب مبانی نظری ترمودینامیک کلاسیک شامل قوانین اول و دوم، معادله بنیادی، تبدیلهای لژاندر و معیارهای تعادل عمومی را ارائه میدهد. بخش دوم شامل توصیف گسترده ای از چگونگی همبستگی، مدل سازی، دستکاری و تخمین خواص ترمودینامیکی است. هر دو رویکرد ماکروسکوپی، تجربی و سطح مولکولی به طور عمیق برای اجزا و مخلوطهای خالص مورد بحث قرار میگیرند. پوشش جدید و دقیق نشان می دهد که چگونه مدل های ماکروسکوپی سنتی به ریشه های خود در سطح مولکولی متصل می شوند. بخش سوم کاربردهای ترمودینامیک کلاسیک را با جزئیات ارائه می کند. این کتاب در هر فرصتی با استفاده از مثالهای گسترده، مسائل کلاسی و تمرینهای تکلیف، تئوری را با کاربردها پیوند میدهد. دوره های تحصیلات تکمیلی مهندسی شیمی و شیمی فیزیک در ترمودینامیک.
Based on the authors' graduate courses at MIT, this text and reference provides a unified understanding of both the critical concepts of chemical thermodynamics and their applications. Part I of this book provides the theoretical basis of classical thermodynamics, including the 1st and 2nd laws, the Fundamental Equation, Legendre transformations, and general equilibrium criteria. Part II contains an extensive description of how thermodynamic properties are correlated, modeled, manipulated and estimated. Both macroscopic, empirically-based and molecular-level approaches are discussed in-depth, for pure components and mixtures. New, detailed coverage shows how traditional macroscopic models are connected to their roots at the molecular level. Part III presents applications of classical thermodynamics in detail. The book connects theory with applications at every opportunity, using extensive examples, classroom problems and homework exercises. Chemical engineering and physical chemistry graduate courses in thermodynamics.
1. The Scope of Classical Thermodynamics 1.1 An Engineering Perspective 1.2 Preclassical Thermodynamics 1.3 The Postulatory Approach 2. Basic Concepts and Definitions 2.1 The System and Its Environment 2.2 Primitive Properties 2.3 Classification of Boundaries 2.4 The Adiabatic Wall 2.5 Simple and Composite Systems 2.6 States of a System 2.7 Stable Equilibrium States 2.8 Thermodynamic Processes 2.9 Derived Properties 2.10 An Important Note About Nomenclature and Units ** 2.11 Summary 3. Energy and the First Law 3.1 Work Interactions * 3.2 Adiabatic Work Interactions * 3.3 Energy 3.4 Heat Interactions 3.5 The Ideal Gas 3.6 The First Law for Closed Systems 3.7 Applications of the First Law for Closed Systems 3.8 The First Law for Open Systems * 3.9 Application of the First Law for Open Systems 4. Reversibility and the Second Law 4.1 Heat Engines 4.2 Reversible Processes 4.3 Thermodynamic Temperature 4.4 The Theorem of Clausius 4.5 Entropy 4.6 Internal Reversibility 4.7 The Combined First and Second Laws * 4.8 Reversible Work of Expansion or Compression in Flow Systems * 4.9 Summary 5. The Calculus of Thermodynamics 5.1 The Fundamental Equation in Gibbs Coordinates 5.2 Intensive and Extensive Properties 5.3 Methods for Transforming Derivatives ** 5.4 Jacobian Transformations ** 5.5 Reconstruction of the Fundamental Equation * 5.6 Legendre Transformations * 5.7 Graphical Representations of Thermodynamic Functions * 5.8 Modifications to the Fundamental Equation for Non-Simple Systems * 5.9 Relationships between Partial Derivatives of Legendre Transforms * 5.10 Summary ** 6. Equilibrium Criteria 6.1 Classification of Equilibrium States 6.2 Extrema Principles 6.3 Use of Other Potential Functions to Define Equilibrium States 6.4 Membrane Equilibrium 6.5 Phase Equilibria 6.6 Chemical Reaction Equilibria 6.7 Summary ** 7. Stability Criteria 7.1 Criteria of Stability 7.2 Applications to Thermodynamic Systems * 7.3 Critical States 7.4 Indeterminacy 7.5 Use of Mole Fractions in the i and i Determinants 7.6 Summary ** Part II: Thermodynamic Properties 8. Properties of Pure Materials 8.1 Gibbs Energy Formulation of the Fundamental Equation * 8.2 PVT Behavior of fluids and the Theorem of Corresponding States ** 8.3 PVTN Equations of State for fluids ** 8.4 Ideal Gas State Heat Capacities * 8.5 Evaluating Changes in Properties Using Departure Functions ** 8.6 Compressibility and Heat Capacity Models for Solid Phases ** 8.7 Derived Property Representations ** 8.8 Standard Enthalpy and Gibbs Free Energy of Formation ** 8.9 Summary ** 9. Property Relationships for Mixtures 9.1 General Approach and Conventions ** 9.2 PVTN Relations for Mixtures 9.3 Partial Molar Properties * 9.4 Generalized Gibbs-Duhem Relation for Mixtures * 9.5 Mixing Functions * 9.6 Ideal Gas Mixtures and Solutions * 9.7 Fugacity and Fugacity Coefficients (fi) ** 9.8 Activity, Excess Functions and Activity Coefficients (i)* 9.9 Reversible Work of Mixing and Separation ** 9.10 Summary ** 10. Statistical Mechanical Approach for Property Models ** 10.1 Basic Concepts of Statistical Mechanics ** 10.2 Intermolecular Forces ** 10.3 Intermolecular Potential Energy Functions ** 10.4 The Virial Equation of State ** 10.5 Molecular Theory of Corresponding States ** 10.6 Generalized van der Waals Theory - Partition Function Decomposition ** 10.7 Radial Distribution Functions and Integral Equations ** 10.8 Hard Sphere Fluids ** 10.9 Molecular Simulation Applications ** 10.10 Summary ** 11. Models for Non-Ideal, Non-electrolyte Solutions ** 11.1 PVTN EOS - Fugacity Coefficient Approach * 11.2 GEX- Activity Coefficient Approach ** 11.3 Ideal Entropy of Mixing and the Third Law ** 11.4 Regular and Athermal Solution Behavior * 11.5 Lattice Models with Configurational and Energetic Effects ** 11.6 McMillan-Mayer Theory ** 11.7 Activity Coefficient Models for Condensed Fluid Phases ** - 11.7.1 First order polynominal models (Margules, Redlich-Kister, etc.) ** - 11.7.2 Configurational effects of molecular size (Flory-Huggins) ** - 11.7.3 Local composition models (Wilson, NRTL) ** - 11.7.4 Quasi-chemical models (UNIQUAC) ** 11.8 Activity Coefficient Models for Solid Phases ** 11.9 Summary and Recommendations ** 12. Models for Electrolyte Solutions ** 12.1 Conventions and Standard States ** 12.2 Experimental Measurements of Ionic Activity ** 12.3 Debye-Huckel Model (theoretical) ** 12.4 Beyond Debye-Huckel Theory ** 12.5 Pitzer Ion-Interaction Model ** 12.6 Meissner Corresponding States Model ** 12.7 Chen Local Composition Model ** 12.8 Performance of Electrolyte Models in Engineering Practice ** 12.9 Modeling Multisolvent Mixed Electrolyte Systems ** 12.10 Summary and Recommendations ** 13. Estimating Physical Properties ** 13.1 Approaches for Property Prediction and Estimation ** 13.2 Sources of Physical Property Data ** 13.3 Group Contribution Methods for Estimating Pure Component Properties ** 13.4 Group Contribution Methods for Estimating Mixture Properties ** 13.5 Applications to Modern Process Analysis and Simulation ** Part III: Chemical Engineering Applications 14. Practical Heat Engines and Power Cycles ** 14.1 Availability, Lost Work, and Exergy Concepts ** 14.2 Carnot, Cycle, and Utilization Efficiencies ** 14.3 Heat Integration and Pinch Technology ** 14.4 Turbine and Compressor Performance and Design ** 14.5 Power Cycle Analysis ** 14.6 Summary ** 15. Phase Equilibrium and Stability 15.1 Equilibrium Criteria and the Phase Rule 15.2 Phase Diagrams ** 15.3 The Differential Approach for Phase Equilibrium Relationships 15.4 Pressure-Temperature Relations 15.5 The Integral Approach to Phase Equilibrium Relationships * 15.6 Equilbria in Systems with Supercritical Components 15.7 Phase Stability Applications ** 15.8 Summary ** 16. Chemical Reaction Equilibria 16.1 Problem Formulation and General Approach 16.2 Conservation of Elements 16.3 Nonstoichiometric Formulation 16.4 Stoichiometric Formulation 16.5 Equilibrium Constants 16.6 The Phase Rule for Chemically Reacting Systems 16.7 Effect of Chemical Equilibrium on Thermodynamic Properties 16.8 Le Chatelier's Principle in Chemical Equilibria 16.9 Summary ** 17. Generalized Approach to Phase and Chemical Equilibria ** 17.1 Phase Rule Parameter Constrained Variations ** 17.2 Matrix/Determinant Formalism as Applied to Gibbs-Duhem and Reaction Equilibrium Expressions ** 17.3 Invariant Systems ** 17.4 Monovariant Systems: Pressure-Temperature Variations ** 17.5 Monovariant Systems: Temperature-Composition Variations ** 17.6 Indifferent States and Azeotropic Behavior ** 17.7 Summary ** 18. Systems Under Stress or in Electric, Magnetic or Potential Fields 18.1 Electromagnetic Work ** 18.2 Electrostatic Systems ** 18.3 Magnetic Systems ** 18.4 Thermodynamics of Systems under Stress 18.5 Systems in Body-Force Fields or under Acceleration Forces 19. Thermodynamics of Surfaces 19.1 Surface Tension 19.2 Equilibrium Considerations 19.3 Effects of Pressure Differences across Curved Interfaces 19.4 Pure-Component Relations 19.5 Multicomponent Relations 19.6 Surface Tension-Composition Relationships 19.7 Nucleation Appendices A) Summary of the Postulates B) Mathematical Relations of Functions of State C) Derivation of Euler's Theorem * D) Cramer's rule and Determinant Properties E) Generalized cubic EOS solver ** F) General Mixture Relationships for Extensive and Intensive Properties G) Pure Component Property Data ** H) Conversion Factors and Gas Constant Values **