دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Andrew M. Steane
سری:
ISBN (شابک) : 0198788568, 9780198788560
ناشر: OUP Oxford
سال نشر: 2016
تعداد صفحات: 464
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Thermodynamics: A complete undergraduate course به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترمودینامیک: یک دوره کامل در مقطع کارشناسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نقش ترمودینامیک در فیزیک مدرن فقط ارائه یک روش تقریبی سیستمهای حرارتی بزرگ نیست، بلکه مهمتر از آن، ارائه مجموعهای سازماندهنده از ایدهها است. ترمودینامیک: یک دوره کامل در مقطع کارشناسی ترمودینامیک را به عنوان مجموعه ای مستقل و ظریف از ایده ها و روش ها ارائه می دهد. این ترمودینامیک را برای دانشجویان مقطع کارشناسی فیزیک، شیمی یا مهندسی، که از سال اول شروع میشود، آشکار میکند. این کتاب روشهای ریاضی لازم را با فرض عدم دانش قبلی معرفی میکند و مفاهیمی مانند آنتروپی و انرژی آزاد را با مثالهای فراوان توضیح میدهد. هدف این کتاب انتقال سبک و قدرت استدلال ترمودینامیکی، همراه با کاربردهایی مانند انبساط ژول-کلوین، توربین گاز، خنک کننده مغناطیسی، جامدات در فشار بالا، تعادل شیمیایی، تبادل حرارت تشعشعی و گرمایش جهانی است. برای روشن نگه داشتن منطق، مکانیک آماری را ذکر می کند، اما آن را دنبال نمی کند.
The role of thermodynamics in modern physics is not just to provide an approximate treatment of large thermal systems, but, more importantly, to provide an organising set of ideas. Thermodynamics: A complete undergraduate course presents thermodynamics as a self-contained and elegant set of ideas and methods. It unfolds thermodynamics for undergraduate students of physics, chemistry or engineering, beginning at first year level. The book introduces the necessary mathematical methods, assuming almost no prior knowledge, and explains concepts such as entropy and free energy at length, with many examples. This book aims to convey the style and power of thermodynamic reasoning, along with applications such as Joule-Kelvin expansion, the gas turbine, magnetic cooling, solids at high pressure, chemical equilibrium, radiative heat exchange and global warming, to name a few. It mentions but does not pursue statistical mechanics, in order to keep the logic clear.
1 How to use this book 1.1 For the student 1.2 For the teacher 2 Introducing thermodynamics 3 A survey of thermodynamic ideas 3.1 Energy and entropy 3.2 Concepts and terminology 3.2.1 System 3.2.2 State 3.2.3 Extensive, intensive 3.2.4 Thermodynamic equilibrium 3.2.5 Temperature 3.2.6 Quasistatic 3.2.7 Reversible and irreversible 3.2.8 Adiathermal, isentropic, adiabatic, isothermal 3.2.9 Expansion coefficients, heat capacities 3.2.10 Thermal reservoir 3.3 The laws of thermodynamics 3.4 Where we are heading Exercises 4 Some general knowledge 4.1 Density, heat capacity 4.2 Moles 4.3 Boltzmann constant, gas constant 4.4 Pressure and STP 4.5 Latent heat 4.6 Magnetic properties 5 Mathematical tools 5.1 Working with partial derivatives 5.1.1 Reciprocal and reciprocity theorems 5.1.2 Integrating 5.1.3 Mixed derivatives 5.2 Proper and improper differentials, function of state 5.2.1 Integrating factor 5.3 Some further observations 5.3.1 Alternative derivation of reciprocal and reciprocity theorems 5.3.2 Integration in general Exercises 6 Zeroth law, equation of state 6.1 Empirical temperature 6.1.1 Equation of state 6.1.2 Algebraic argument () 6.2 Some example equations of state 6.2.1 Ideal gas 6.2.2 Thermal radiation 6.2.3 Solids and wires 6.2.4 Paramagnetic material 6.2.5 Equations of state for other properties 6.3 Thermometry Exercises 7 First law, internal energy 7.1 Defining internal energy 7.1.1 Heat and work 7.2 Work by compression 7.3 Heat capacities 7.3.1 Energy equation 7.3.2 Relation of compressibilitiesand heat capacities 7.4 Solving thermodynamic problems 7.5 Expansion 7.5.1 Free expansion of ideal gas 7.5.2 Adiabatic expansion of ideal gas 7.5.3 Adiabatic atmosphere 7.5.4 Fast and yet adiabatic? Exercises 8 The second law and entropy 8.1 Heat engines and the Carnot cycle 8.1.1 Heat pumps and refrigerators 8.1.2 Two impossible things (equivalence of Kelvin and Clausius statements) 8.2 Carnot\'s theorem and absolute temperature 8.2.1 Carnot\'s theorem: reversible engines are equally, and the most, efficient 8.2.2 Existence of an absolute temperature measure 8.2.3 Hot heat is more valuable than cold heat 8.3 Clausius\' theorem and entropy 8.4 The first and second laws together 8.5 Summary Exercises 9 Understanding entropy 9.1 Examples 9.1.1 Entropy content 9.1.2 Entropy production and entropy flow 9.2 But what is it? 9.2.1 Entropy increase in a free expansion 9.3 Gibbs\' paradox 9.3.1 Entropy of mixing 9.3.2 Reversible mixing 9.4 Specific heat anomalies 9.5 Maxwell\'s daemon 9.5.1 Szilard engine 9.5.2 The Feynman–Smoluchowski ratchet 9.6 The principle of detailed balance 9.7 Adiabatic surfaces () 9.8 Irreversibility in the universe Exercises 10 Heat flow and thermal relaxation 10.1 Thermal conduction; diffusion equation 10.1.1 Steady state 10.1.2 Time-dependent 10.2 Relaxation time 10.3 Speed of sound () 10.3.1 Ultra-relativistic gas Exercises 11 Practical heat engines 11.1 The maximum work theorem 11.1.1 Imperfections 11.2 Otto cycle Exercises 12 Introducing chemical potential 12.1 Chemical potential of anideal gas 12.1.1 Example: the isothermal atmosphere 12.2 Saha equation () Exercises 13 Functions and methods 13.1 The fundamental relation 13.1.1 Euler relation, Gibbs–Duhem relation 13.2 Thermodynamic potentials 13.2.1 Free energy as a form of potential energy 13.2.2 Natural variables and thermodynamic potentials 13.2.3 Maxwell relations 13.2.4 Obtaining one potential function from another 13.3 Basic results for closed systems 13.3.1 Relating internal energy to equation of state 13.3.2 Sackur–Tetrode equation 13.3.3 Complete thermodynamic information Exercises 14 Elastic bands, rods, bubbles, magnets 14.1 Expressions for work 14.2 Rods, wires, elastic bands 14.3 Surface tension 14.4 Paramagnetism 14.4.1 Ideal paramagnet 14.4.2 Cooling by adiabatic demagnetization 14.5 Electric and magnetic work () 14.5.1 Dielectrics and polarization 14.5.2 Magnetic work 14.6 Introduction to the partition function () Exercises 15 Modelling real gases 15.1 van der Waals gas 15.1.1 Phase change 15.1.2 Critical parameters and the law of corresponding states 15.2 Redlich–Kwong, Dieterici, and Peng–Robinson gas Exercises 16 Expansion and flow processes 16.1 Expansion coefficients 16.2 U: free expansion 16.2.1 Deriving the equation of state of an ideal gas 16.3 H: throttle process: Joule–Kelvin expansion 16.3.1 Bernoulli equation 16.3.2 Cooling and liquification of gases 16.4 General flow process 16.4.1 S and H: the gas turbine Exercises 17 Stability and free energy 17.1 Isolated system: maximum entropy 17.1.1 Equilibrium condition with internal restrictions 17.1.2 The minimum energy principle 17.1.3 Stability 17.2 Phase change 17.3 Free energy and availability 17.3.1 Free energy and equilibrium Exercises 18 Reinventing the subject 18.1 Some basic derivations from maximum entropy 18.2 Carathéodory formulation of the second law () 18.3 Negative temperature () 19 Thermal radiation 19.1 Some general observations about thermal radiation 19.1.1 Black body radiation: a first look 19.2 Basic thermodynamic arguments 19.2.1 Equation of state and Stefan–Boltzmann law 19.2.2 Comparison with ideal gas 19.2.3 Adiabatic expansion and Wien\'s laws () 19.3 Cosmic microwave background radiation Exercises 20 Radiative heat transfer 20.1 The greenhouse effect Exercises 21 Chemical reactions 21.1 Basic considerations 21.1.1 Reaction rate 21.2 Chemical equilibrium and the law of mass action 21.2.1 Van \'t Hoff equation 21.2.2 Chemical terminology 21.3 The reversible electric cell () Exercises 22 Phase change 22.1 General introduction 22.1.1 Phase diagram 22.1.2 Some interesting phase diagrams 22.2 Basic properties of first-order phase transitions 22.3 Clausius–Clapeyron equation 22.3.1 Vapour–liquid and liquid–solid coexistence lines 22.3.2 Gibbs phase rule 22.3.3 Behaviour of the chemical potential 22.4 The type-I superconducting transition () Exercises 23 The third law 23.1 Response functions 23.2 Unattainability theorem 23.3 Phase change 23.4 Absolute entropy and chemical potential 24 Phase change, nucleation, and solutes 24.1 Treatment of surface effects 24.2 Metastable phases 24.2.1 Nucleation 24.3 Colligative properties 24.3.1 Osmotic pressure 24.3.2 Influence of dissolved particles on phase transitions 24.4 Chapter summary Exercises 25 Continuous phase transitions 25.1 Order parameter 25.2 Critical exponents 25.3 Landau mean field theory 25.3.1 Application to ferromagnetism 25.4 Binary mixtures Exercises 26 Self-gravitation and negative heat capacity 26.1 Negative heat capacity 26.1.1 Jeans length 26.2 Black holes and Hawking radiation Exercises 27 Fluctuations 27.1 Probability of a departure from the maximum entropy point 27.1.1 Is there a violation of the second law? 27.2 Calculating the fluctuations 27.2.1 More general constraints 27.2.2 Some general observations 27.3 Internal flows 27.4 Fluctuation as a function of time 27.5 Johnson noise Exercises 28 Thermoelectricity and entropy flow 28.1 Thermoelectric effects 28.1.1 Thomson\'s treatment 28.2 Entropy gradients and Onsager\'s reciprocal relations 28.2.1 Derivation of Onsager\'s reciprocal relation 28.2.2 Application 28.2.3 Entropy current, entropy production rate Exercises Appendix A Electric and magnetic work Appendix B More on natural variables and free energy Appendix C Some mathematical results Bibliography Index